
1/22

On the Cost of Computing Isogenies Between
Supersingular Elliptic Curves

Gora Adj 1, Daniel Cervantes-Vázquez 2, Jesús-Javier
Chi-Doḿınguez 2, Alfred Menezes 1, and Francisco

Rodŕıguez-Henŕıquez 2

1Department of Combinatorics & Optimization, University of Waterloo

2Computer Science Department, CINVESTAV-IPN

August 17, 2018

1/22

Agenda

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

1/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

2/22

Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement
scheme was proposed by De Feo and
Jao [De Feo & Jao’11, De Feo, Jao and Plût’14].

• It is one of 69 candidates being considered by the (NIST) for
inclusion in a forthcoming standard for quantum-safe
cryptography [Jao et al.’17].

• Its security is based on the difficulty of the Computational
Supersingular Isogeny (CSSI) problem (CSSI problem was
introduced in [Charles et al.’09]).

2/22

Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement
scheme was proposed by De Feo and
Jao [De Feo & Jao’11, De Feo, Jao and Plût’14].

• It is one of 69 candidates being considered by the (NIST) for
inclusion in a forthcoming standard for quantum-safe
cryptography [Jao et al.’17].

• Its security is based on the difficulty of the Computational
Supersingular Isogeny (CSSI) problem (CSSI problem was
introduced in [Charles et al.’09]).

2/22

Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement
scheme was proposed by De Feo and
Jao [De Feo & Jao’11, De Feo, Jao and Plût’14].

• It is one of 69 candidates being considered by the (NIST) for
inclusion in a forthcoming standard for quantum-safe
cryptography [Jao et al.’17].

• Its security is based on the difficulty of the Computational
Supersingular Isogeny (CSSI) problem (CSSI problem was
introduced in [Charles et al.’09]).

2/22

Introduction: main contributions

One of our main contributions is the observation that VW golden
collision search can be used to solve CSSI.

Thus, there are two classical attacks on CSSI:

• Meet-in-the middle, and

• VW golden collision search.

We argue that, even though VW is slower than MITM, it is less
costly, and thus should be used to select parameters for resistance
to known classical attacks.

Remarks: two facts about VW golden collision search:

1 it is not well known, and

2 it is different from the “usual” VW collision search.

2/22

Introduction: main contributions

One of our main contributions is the observation that VW golden
collision search can be used to solve CSSI.
Thus, there are two classical attacks on CSSI:

• Meet-in-the middle, and

• VW golden collision search.

We argue that, even though VW is slower than MITM, it is less
costly, and thus should be used to select parameters for resistance
to known classical attacks.

Remarks: two facts about VW golden collision search:

1 it is not well known, and

2 it is different from the “usual” VW collision search.

2/22

Introduction: main contributions

One of our main contributions is the observation that VW golden
collision search can be used to solve CSSI.
Thus, there are two classical attacks on CSSI:

• Meet-in-the middle, and

• VW golden collision search.

We argue that, even though VW is slower than MITM, it is less
costly, and thus should be used to select parameters for resistance
to known classical attacks.

Remarks: two facts about VW golden collision search:

1 it is not well known, and

2 it is different from the “usual” VW collision search.

2/22

Introduction: main contributions

One of our main contributions is the observation that VW golden
collision search can be used to solve CSSI.
Thus, there are two classical attacks on CSSI:

• Meet-in-the middle, and

• VW golden collision search.

We argue that, even though VW is slower than MITM, it is less
costly, and thus should be used to select parameters for resistance
to known classical attacks.

Remarks: two facts about VW golden collision search:

1 it is not well known, and

2 it is different from the “usual” VW collision search.

2/22

Introduction

Flow of this presentation

In this talk, we will review the VW golden collision search as it
applies to CSSI problem.

Remark: we are not accounting for the memory access costs, which
are expected to be quite expensive.

2/22

Introduction

Flow of this presentation

In this talk, we will review the VW golden collision search as it
applies to CSSI problem.
Remark: we are not accounting for the memory access costs, which
are expected to be quite expensive.

2/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA] + [mA]

RB ← [nB] + [mB]

E

E/〈RA,RB〉

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA] + [mA]

RB ← [nB] + [mB]

E

E/〈RA,RB〉

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA]PA + [mA]QA

RB ← [nB]PB + [mB]QB

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA]PA + [mA]QA

RB ← [nB]PB + [mB]QB

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB

φA
(PB

),φA
(QB

),E
/〈RA
〉

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

RA ← [nA]PA + [mA]QA

RB ← [nB]PB + [mB]QB

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB

φA
(PB

),φA
(QB

),E
/〈RA
〉

φB
(PA

),φB
(QA

),E
/〈RB
〉

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

φB(RA)← [nA]φB(PA) + [mA]φB(QA)

φA(RB)← [nB]φA(PB) + [mB]φA(QB)

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB φ′B

φA
(PB

),φA
(QB

),E
/〈RA
〉

φB
(PA

),φB
(QA

),E
/〈RB
〉

φ′A

The shared secret key is j(E/〈RA,RB〉).

3/22

SIDH overview
[De Feo, Jao and Plût’14, Jao et al.’17]

SIDH framework:

• p = `eAA `
eB
B d − 1 is a prime number,

• E is a supersingular elliptic curve defined over Fp2 with
#E (Fp2) = (p + 1)2.

• E [`eAA](Fp2) = 〈PA,QA〉 and E [`eBB](Fp2) = 〈PB ,QB〉.

General description SIDH:

φB(RA)← [nA]φB(PA) + [mA]φB(QA)

φA(RB)← [nB]φA(PB) + [mB]φA(QB)

E E/〈RA〉

E/〈RB〉 E/〈RA,RB〉

φA

φB φ′B

φA
(PB

),φA
(QB

),E
/〈RA
〉

φB
(PA

),φB
(QA

),E
/〈RB
〉

φ′A

The shared secret key is j(E/〈RA,RB〉).

3/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

4/22

CSSI problem

As a consequence, SIDH based its security in the hardness of the
following problem

Problem (CSSI)

Given the public parameters `A, `B , eA, eB , p, E , PA, QA, and the
elliptic curve E/〈RA〉, compute a degree-`eAA isogeny
φA : E → E/〈RA〉.

5/22

CSSI modeled as Collision Finding
Problem

Let’s write (R, `, e) to mean either (RA, `A, eA) or (RB , `B , eB),
E1 = E , and E2 = E/〈R〉. Notice that the degree-(`e) isogeny
φ : E → E/〈R〉 can be writen as the composition of two
degree-`e/2 isogenies.

φR̃0

R̃0 =
[
`
e
2

]
R

φR̃1

R̃1 = φR̃0
(R)

E1 E1/〈R̃0〉 E2

5/22

CSSI modeled as Collision Finding
Problem

Let’s write (R, `, e) to mean either (RA, `A, eA) or (RB , `B , eB),
E1 = E , and E2 = E/〈R〉. Therefore, E1 and E2 satisfies:

φ[`e/2]R1

∀R1 ∈ E1[`e](Fp2)
of order `e

just one
collision

φ[`e/2]R2

∀R2 ∈ E2[`e](Fp2)
of order `e

E1 j(E1/〈R1〉) E2j(E2/〈R2〉)

5/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

5/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

6/22

Meet-in-the-middle attack

Let’s ilustrate how MITM works by an example. Let `A = 2,
`B = 3, eA = 4, eB = 2, p = 24 · 32 · 5− 1,

E1 : y2 = x3 +
(
0x040 · i + 0x1F0

)
x +

(
0x1E6 · i + 0x0C7

)
,

P1 = (0x16E · i + 0x1B4, 0x10B · i + 0x05F),

Q1 = (0x203 · i + 0x0CC, 0x047 · i + 0x0C5), and

E2 : y2 = x3 +
(
0x1CF · i + 0x047

)
x +

(
0x1EA · i + 0x00D

)
.

Then, the goal is to find a degree-24 isogeny from E1 to E2.

6/22

Meet-in-the-middle attack

First, compute the degree-22 isogeny tree rooted at E1, and store
its leaves.

E1

E12

0x000 · i + 0x000

0x000 · i + 0x000

E11

0x000 · i + 0x088

0x000 · i + 0x000

E10

0x000 · i + 0x000

0x000 · i + 0x000

E2

E20

0x000 · i + 0x000

0x000 · i + 0x000

E21

0x000 · i + 0x000

0x000 · i + 0x000

E22

0x000 · i + 0x000

0x000 · i + 0x000

6/22

Meet-in-the-middle attack

First, compute the degree-22 isogeny tree rooted at E1, and store
its leaves.

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x000 · i + 0x000

0x000 · i + 0x000

E21

0x000 · i + 0x000

0x000 · i + 0x000

E22

0x000 · i + 0x000

0x000 · i + 0x000

6/22

Meet-in-the-middle attack

Second, compute degree-22 isogenies at E2 until the match is
found.

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x0A0 · i + 0x1B3
0x101 · i + 0x0DC

0x05B
0x14D · i + 0x23F

0x127 · i +
0x026

E21

0x07F · i + 0x0DD
0x047 · i + 0x218

0x000 · i + 0x000

0x22D · i + 0x228

E22

0x000 · i + 0x000
0x00 · i + 0x000

0x000 · i + 0x000
0x00 · i + 0x000

0x
00
· i

+
0x

00
0

6/22

Meet-in-the-middle attack

Then, we can reconstruct φA : E1 → E2 by composing the following
isogenies:

E1
φ0−→ E10

φ1−→ E100

Fp2 -isomorphism
−−−−−−−−−−→

ψ
E210

φ̂2−→ E21
φ̂3−→ E2

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x0A0 · i + 0x1B3
0x101 · i + 0x0DC

0x05B
0x14D · i + 0x23F

0x127 · i +
0x026

E21

0x07F · i + 0x0DD
0x047 · i + 0x2180x241 · i + 0x16E

0x000 · i + 0x000
0x144 · i + 0x238

0x22D · i + 0x228

0x144 · i + 0x14E

E22

0x000 · i + 0x000
0x00 · i + 0x000

0x000 · i + 0x000
0x00 · i + 0x000

0x
00
· i

+
0x

00
0

6/22

Meet-in-the-middle attack

Now, let λ be the discrete log of φA(QA) in base φA(PA) (or vice
versa). Then, the secret kernel of Alice is 〈QA − [λ]PA〉 (or
PA − [λ]QA). In our example, λ = 3.

E1

E12

0x255 · i + 0x01D

0x081 · i + 0x2C5

0x10D · i + 0x25F

0x031 · i + 0x09D

0x059 · i +
0x1B1

E11

0x088 · i + 0x01F

0x160 · i + 0x108

0x045
0x160 · i + 0x108

0x0FF · i + 0x053

E10

0x00A

0x0F9 · i + 0x150

0x07F · i + 0x0DD
0x1F5 · i + 0x046

0x
17

7
· i

+
0x

0C
B

E2

E20

0x0A0 · i + 0x1B3
0x101 · i + 0x0DC

0x05B
0x14D · i + 0x23F

0x127 · i +
0x026

E21

0x07F · i + 0x0DD
0x047 · i + 0x2180x241 · i + 0x16E

0x000 · i + 0x000
0x144 · i + 0x238

0x22D · i + 0x228

0x144 · i + 0x14E

E22

0x000 · i + 0x000
0x00 · i + 0x000

0x000 · i + 0x000
0x00 · i + 0x000

0x
00
· i

+
0x

00
0

7/22

Meet-in-the-middle attack

Clearly, The average-case time complexity is 1.5N and it has space

complexity N, where N ≈ (`A + 1)`
eA/2−1
A ≈ p1/4 (Infeasible for

N ≥ 280).

Consequently, using m processors and w cells of memory, the
running time of MITM is approximately

(w/m + N/m)
N

w
≈ N2/(w ·m) ≈ p1/2/(w ·m).

7/22

Meet-in-the-middle attack

Clearly, The average-case time complexity is 1.5N and it has space

complexity N, where N ≈ (`A + 1)`
eA/2−1
A ≈ p1/4 (Infeasible for

N ≥ 280).
Consequently, using m processors and w cells of memory, the
running time of MITM is approximately

(w/m + N/m)
N

w
≈ N2/(w ·m) ≈ p1/2/(w ·m).

8/22

Meet-in-the-middle attack: experiments

MITM-basic MITM-DFS

expected measured clock clock

eA eB d time space time cycles cycles

32 20 23 217.17 220.72 217.26 234.50 231.73

34 21 109 218.17 221.83 218.24 235.49 232.71

36 22 31 219.17 222.87 219.14 236.43 233.67

38 23 271 220.17 223.99 220.20 237.59 234.60

40 25 71 221.17 225.04 221.15 238.63 235.71

42 26 37 222.17 226.09 222.11 239.83 236.78

44 27 37 223.17 227.14 223.25 241.07 237.87

Meet-in-the-middle attacks for finding a 2eA -isogeny between two
supersingular elliptic curves over Fp2 with p = 2eA · 3eB · d − 1. The
‘expected time’ and ‘measured time’ columns give the expected number
and the actual number of degree-2eA/2 isogeny computations for
MITM-basic. The space is measured in bytes.

8/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

9/22

Collision search problem

Let S be a finite set of size M. The goal is to find a collision for a
random function f : S → S .

10/22

VW collision search

Firstly, let’s define an element x of S to be distinguished if it has
some easily-testable distinguishing property, and let θ be the
proportion of elements of S that are distinguished.

Then, using m processors, the expected time complexity of the VW
method is approximately 1

m

√
πM/2 + 2.5/θ.

10/22

VW collision search

Firstly, let’s define an element x of S to be distinguished if it has
some easily-testable distinguishing property, and let θ be the
proportion of elements of S that are distinguished.

Then, using m processors, the expected time complexity of the VW
method is approximately 1

m

√
πM/2 + 2.5/θ.

11/22

VW golden collision search

A random function f : S → S is expected to have (M − 1)/2
unordered collisions.

Suppose that we seek a particular one of
these collisions, called a golden collision, which can be efficiently
recognized.
Consequently, one continues generating distinguished points and
collisions until the golden collision is encountered.

11/22

VW golden collision search

A random function f : S → S is expected to have (M − 1)/2
unordered collisions. Suppose that we seek a particular one of
these collisions, called a golden collision, which can be efficiently
recognized.

Consequently, one continues generating distinguished points and
collisions until the golden collision is encountered.

11/22

VW golden collision search

A random function f : S → S is expected to have (M − 1)/2
unordered collisions. Suppose that we seek a particular one of
these collisions, called a golden collision, which can be efficiently
recognized.
Consequently, one continues generating distinguished points and
collisions until the golden collision is encountered.

11/22

VW golden collision search
The golden collision might occur with very small probability
compared to other collision.

Thus, it is necessary to change the
version of f periodically.

0

10
20

2

17

19
7

15 4

9

25

1 12 13

22

26

11

8

6
21

27

5

32423
18

16

14

Functional graph of a random function f : {0, . . . , 27} → {0, . . . , 27}.
The desire golden collision is marked with Orange.

11/22

VW golden collision search
The golden collision might occur with very small probability
compared to other collision. Thus, it is necessary to change the
version of f periodically.

0

10
20

2

17

19
7

15 4

9

25

1 12 13

22

26

11

8

6
21

27

5

32423
18

16

14

Functional graph of a random function f : {0, . . . , 27} → {0, . . . , 27}.
The desire golden collision is marked with Orange.

12/22

VW golden collision search

Let

• w be the number of elements we can store in memory,

• θ = 2.25
√
w/M,

• 10w be the number of distinguished elements that each
version of f produces,

• 210 ≤ w ≤ M/210.

Heuristically, van Oorschot and Wiener saw that each version of f
generates approximately 1.3w collisions, of which approximately
1.1w are distinct. In addition, the expected running time to find
the golden collisions when m processors are employed is

1

m

(
2.5
√
M3/w

)
. (1)

12/22

VW golden collision search

Let

• w be the number of elements we can store in memory,

• θ = 2.25
√
w/M,

• 10w be the number of distinguished elements that each
version of f produces,

• 210 ≤ w ≤ M/210.

Heuristically, van Oorschot and Wiener saw that each version of f
generates approximately 1.3w collisions, of which approximately
1.1w are distinct.

In addition, the expected running time to find
the golden collisions when m processors are employed is

1

m

(
2.5
√
M3/w

)
. (1)

12/22

VW golden collision search

Let

• w be the number of elements we can store in memory,

• θ = 2.25
√
w/M,

• 10w be the number of distinguished elements that each
version of f produces,

• 210 ≤ w ≤ M/210.

Heuristically, van Oorschot and Wiener saw that each version of f
generates approximately 1.3w collisions, of which approximately
1.1w are distinct. In addition, the expected running time to find
the golden collisions when m processors are employed is

1

m

(
2.5
√
M3/w

)
. (1)

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

j = j(Ec/〈R〉) ∈ Fp2

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

j = j(Ec/〈R〉) ∈ Fp2

hc

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

j = j(Ec/〈R〉) ∈ Fp2

hc

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

j = j(Ec/〈R〉) ∈ Fp2

hc

fc

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

(c ′, b′, k ′) ∈ S j = j(Ec/〈R〉) ∈ Fp2

hc

fc

gn

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

13/22

Solving CSSI with VW golden collision
search

Let n ∈ {0, 1}64, S = {1, 2} × {0, . . . , `} × {0, . . . , `e/2−1 − 1},
and {P1,Q1}, {P2,Q2} be bases for E1[`e/2],E2[`e/2], respectively.

Then, f : S → S can be described as follows:

(c, b, k) ∈ S R =

{
[` · k]Pc + Qc , if b = `,
Pc + [b · `e/2−1 + k]Qc , otherwise.

(c ′, b′, k ′) ∈ S j = j(Ec/〈R〉) ∈ Fp2

hc

f=gn◦fc◦hc fc

gn

Here, gn is defined by using (iteratively) a hash function and
returning its log2 #S least significant bits.

14/22

Solving CSSI with VW golden collision
search

e p w 28 210 212 214 216

50 250331179− 1 c1 1.37 1.36 1.37 1.41 1.49

c2 1.14 1.12 1.12 1.11 1.09

60 26033731− 1 c1 1.37 1.34 1.34 1.35 1.36

c2 1.15 1.13 1.13 1.12 1.12

70 270332127− 1 c1 1.33 1.34 1.34 1.34 1.34

c2 1.13 1.14 1.13 1.13 1.13

80 28032571− 1 c1 1.35 1.32 1.33 1.34 1.33

c2 1.14 1.12 1.13 1.13 1.13

Observed number c1w of collisions and number c2w of distinct collisions
per CSSI-based random function fn. The numbers are averages for 25
function versions (except for (e,w) ∈ {(80, 212), (80, 214), (80, 216)} for
which 5 function versions were used).

14/22

Solving CSSI with VW golden collision
search

Therefore, using m processors and w cells of memory, the VW
method can be used to find this golden collision in expected time

1

m

(
2.5
√

8N3/w
)
≈ 7.1p3/8/(w1/2m).

15/22

Solving CSSI with VW golden collision
search: experiments

median average

expected measured clock measured clock

eA eB d w time time cycles time cycles

32 20 23 29 223.20 223.55 240.79 224.38 241.62

34 21 109 29 224.70 224.54 241.89 226.02 243.37

36 22 31 210 225.70 226.06 243.51 227.25 244.70

38 23 271 211 226.70 226.15 243.70 227.69 245.23

40 25 71 211 228.20 226.36 243.99 229.01 246.64

42 26 37 212 229.20 228.92 246.52 230.95 248.55

44 27 37 213 230.20 229.78 247.46 230.91 248.58

Van Oorschot-Wiener golden collision search for finding a 2eA -isogeny
between two supersingular elliptic curves over Fp2 with
p = 2eA · 3eB · d − 1. The expected and measured times list the number
of degree-2eA/2 isogeny computations.

16/22

Solving CSSI with VW golden collision
search: 128-, 160-, 192-bit security

p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

processors space calendar total calendar total calendar total calendar total
m w time time time time time time time time

Meet-in-the-middle using Depth-first search
48 64 106 154 138 186 150 198 188 236
48 80 90 138 122 170 134 182 172 220
64 80 74 138 106 170 118 182 156 220

van Oorschot and Wiener golden collision search
48 64 88 136 112 160 121 169 149 197
48 80 80 128 104 152 113 161 141 189
64 80 64 128 88 152 97 161 125 189

Time complexity estimates of CSSI attacks for p ≈ 2448, p ≈ 2512,
p ≈ 2536 and p ≈ 2614. All numbers are expressed in their base-2
logarithms. The unit of time is a 2e/2-isogeny computation 2, and we are
ignoring communication costs.

Conclusion: MITM is more costly than VW golden collision search.

2Calendar time is the elapsed time taken for a computation, whereas total
time is the sum of the time expended by all m processors.

16/22

Solving CSSI with VW golden collision
search: 128-, 160-, 192-bit security

p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

processors space calendar total calendar total calendar total calendar total
m w time time time time time time time time

Meet-in-the-middle using Depth-first search
48 64 106 154 138 186 150 198 188 236
48 80 90 138 122 170 134 182 172 220
64 80 74 138 106 170 118 182 156 220

van Oorschot and Wiener golden collision search
48 64 88 136 112 160 121 169 149 197
48 80 80 128 104 152 113 161 141 189
64 80 64 128 88 152 97 161 125 189

Time complexity estimates of CSSI attacks for p ≈ 2448, p ≈ 2512,
p ≈ 2536 and p ≈ 2614. All numbers are expressed in their base-2
logarithms. The unit of time is a 2e/2-isogeny computation 2, and we are
ignoring communication costs.

Conclusion: MITM is more costly than VW golden collision search.
2Calendar time is the elapsed time taken for a computation, whereas total

time is the sum of the time expended by all m processors.

16/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

17/22

Comments about quantum attacks

Tani’s algorithm

The fastest known quantum attack on CSSI is Tani’s algorithm
[Tani’09], which has an running time equal to O(p1/6) and requires
O(p1/6) space.

Grover’s algorithm

Clearly, CSSI can also be solved by an application of Grover’s
quantum search [Grover’96], which has a running time equal to
O(p1/4). However, using m quantum circuits only yields a speedup
by a factor of

√
m [Zalka’99].

Tani vs Grover: the recent work of Jaques and Schanck argue that
Tani’s algorithm is more costly than Grover’s algorithm using all
reasonable cost measures [Jaques & Schank’18].

17/22

Comments about quantum attacks

Tani’s algorithm

The fastest known quantum attack on CSSI is Tani’s algorithm
[Tani’09], which has an running time equal to O(p1/6) and requires
O(p1/6) space.

Grover’s algorithm

Clearly, CSSI can also be solved by an application of Grover’s
quantum search [Grover’96], which has a running time equal to
O(p1/4). However, using m quantum circuits only yields a speedup
by a factor of

√
m [Zalka’99].

Tani vs Grover: the recent work of Jaques and Schanck argue that
Tani’s algorithm is more costly than Grover’s algorithm using all
reasonable cost measures [Jaques & Schank’18].

17/22

Comments about quantum attacks

Tani’s algorithm

The fastest known quantum attack on CSSI is Tani’s algorithm
[Tani’09], which has an running time equal to O(p1/6) and requires
O(p1/6) space.

Grover’s algorithm

Clearly, CSSI can also be solved by an application of Grover’s
quantum search [Grover’96], which has a running time equal to
O(p1/4). However, using m quantum circuits only yields a speedup
by a factor of

√
m [Zalka’99].

Tani vs Grover: the recent work of Jaques and Schanck argue that
Tani’s algorithm is more costly than Grover’s algorithm using all
reasonable cost measures [Jaques & Schank’18].

17/22

Comments about quantum attacks
NIST suggests that 240 is the maximum depth of a quantum
circuit that can be executed in one year using presently envisioned
quantum computing architectures [NIST’16].

Thus, assuming that the maximum circuit depth is 2k , the number
of quantum circuits needed to perform Grover’s search in one year

for p ≈ 2r is approximately
(
2
r
4

2k

)2
.

Maximum depth of p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

a quantum circuit m m m m

40 144 176 188 227

64 96 128 140 179

Number of quantum circuits needed to perform Grover’s search in one
year for p ≈ 2448, p ≈ 2512, p ≈ 2536, and p ≈ 2614. All numbers are
expressed in their base-2 logarithms.

17/22

Comments about quantum attacks
NIST suggests that 240 is the maximum depth of a quantum
circuit that can be executed in one year using presently envisioned
quantum computing architectures [NIST’16].

Thus, assuming that the maximum circuit depth is 2k , the number
of quantum circuits needed to perform Grover’s search in one year

for p ≈ 2r is approximately
(
2
r
4

2k

)2
.

Maximum depth of p ≈ 2448 p ≈ 2512 p ≈ 2536 p ≈ 2614

a quantum circuit m m m m

40 144 176 188 227

64 96 128 140 179

Number of quantum circuits needed to perform Grover’s search in one
year for p ≈ 2448, p ≈ 2512, p ≈ 2536, and p ≈ 2614. All numbers are
expressed in their base-2 logarithms.

17/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

18/22

Recommendations

Assuming m ≤ 264 and w ≤ 280, we suggest

• p434 = 22163137 − 1 (instead of p751 = 23723239 − 1
[Costello et al.’16]) in order to achieve 128-bit security,

• p546 = 22733172 − 1 (instead of p964 = 24863301 − 1
[Jao et al.’17]) in order to achieve 160-bit security, and

• p610 = 23053192 − 1 in order to achieve 192-bit security.

18/22

Recommendations
SIDH operations are about 4.8 times faster when p434 is used
instead of p751.

Protocol CLN library [Costello et al.’16] CLN + enhancements
phase p751 p434 p546 p751 p434 p546

Key
Gen.

Alice 35.7 7.51 13.20 26.9 5.3 10.5

Bob 39.9 8.32 14.84 30.5 6.0 11.7

Shared
Secret

Alice 33.6 7.01 12.56 24.9 5.0 10.0

Bob 38.4 7.94 14.35 28.6 5.8 11.5

Performance of the SIDH protocol. All timings are reported in 106 clock
cycles, measured on an Intel Core i7-6700 supporting a Skylake
micro-architecture. The “CLN + enhancements” columns are for our
implementation that incorporates improved formulas for degree-4 and
degree-3 isogenies from [Costello & Hisil’17] and Montgomery ladders
from [Faz-Hernández et al.’17] into the CLN library.

18/22

Outline

1 Introduction

2 SIDH overview

3 CSSI problem

4 How to solve Collision Finding Problem?
Meet-in-the-middle
VW golden collision search
Comments about quantum attacks
Recommendations

5 Conclusions

19/22

Conclusions

• We showed that VW Golden Collision search can be used to
attack CSSI.

• First implementations of MITM and Golden collision search
CSSI attacks reported.

• The implementations confirm that the performance of these
attacks is accurately predicted by their heuristic analysis.

• Our concrete cost analysis of the attacks leads to the
conclusion that golden collision search is more cost effective
that the meet-in-the-middle attack.

• SIDH operations are about 4.8 times faster when p434 is used
instead of p751.

19/22

Conclusions

SIDH parameters with p434 could be deemed to meet the security
requirements in NIST’s Category 2 [NIST’16] (classical and
quantum security comparable or greater than that of SHA-256
with respect to collision resistance).

SIDH parameters with p610 could be deemed to meet the security
requirements in NIST’s Category 4 [NIST’16] (classical and
quantum security comparable to that of SHA-384).

20/22

Thank you for your attention

I look forward to your comments and questions.
e-mail: jjchi@computacion.cs.cinvestav.mx

We thank Steven Galbraith for the suggestion to traverse the
MITM trees using depth-first search. We also thank Sam Jaques
for the many discussions on Grover’s and Tani’s algorithms.

19/22

Reference I

I D. Jao and L. De Feo, “Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies”,
Post-Quantum Cryptography — PQCrypto 2011, LNCS 7071
(2011), 19–34.

I D. Charles, E. Goren and K. Lauter, “Cryptographic hash
functions from expander graphs”, Journal of Cryptology, 22
(2009), 93–113.

I J.M. Pollard, “Monte Carlo Methods for Index Computation
(mod p)”. Mathematics of Computation, 32 (1978).

I P. van Oorschot and M. Wiener, “Improving implementable
meet-in-the-middle attacks by orders of magnitude”, Advances
in Cryptology — CRYPTO ’96, LNCS 1109 (1996), 229–236.

20/22

Reference II

I L. De Feo, D. Jao and J. Plût, “Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies”,
Journal of Mathematical Cryptology, 8 (2014), 209–247.

I D. Jao et al., “Supersingular isogeny key encapsulation”,
Round 1 submission, NIST Post-Quantum Cryptography
Standardization, November 30, 2017.

I Wikipedia, “Sunway TaihuLight”,
https://en.wikipedia.org/wiki/Sunway_TaihuLight.

I Wikipedia, “Exabyte”,
https://en.wikipedia.org/wiki/Exabyte#Google.

https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Exabyte#Google

21/22

Reference III

I National Institute of Standards and Technology, “Submission
requirements and evaluation criteria for the post-quantum
cryptography standardization process”, December 2016.
Available from https://csrc.nist.gov/csrc/media/

projects/post-quantum-cryptography/documents/

call-for-proposals-final-dec-2016.pdf.

I L. Grover, “A fast quantum mechanical algorithm for database
search”, Proceedings of the Twenty-Eighth Annual Symposium
on Theory of Computing — STOC ’96, ACM Press (1996),
212–219.

I S. Tani, “Claw finding algorithms using quantum walk”,
Theoretical Computer Science, 410 (2009), 5285–5297.

I C. Zalka, “Grover’s quantum searching algorithm is optimal”,
Physical Review A, 60 (1999), 2746–2751.

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf

22/22

Reference IV

I C. Costello and H. Hisil, “A simple and compact algorithm for
SIDH with arbitrary degree isogenies”, Advances in Cryptology
— ASIACRYPT 2017, LNCS 10624 (2017), 303–329.

I A. Faz-Hernández, J. López, E. Ochoa-Jiménez and F.
Rodŕıguez-Henŕıquez, “A faster software implementation of the
supersingular isogeny Diffie-Hellman key exchange protocol”,
IEEE Transactions on Computers, to appear; also available from
http://eprint.iacr.org/2017/1015.

I C. Costello, P. Longa and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman”, Advances in Cryptology
— CRYPTO 2016, LNCS 9814 (2016), 572–601.

I S. Jaques and J. Schanck, “Cost analyses of Tani’s algorithm”,
in preparation.

http://eprint.iacr.org/2017/1015

	Introduction
	SIDH overview
	CSSI problem
	How to solve Collision Finding Problem?
	Meet-in-the-middle
	VW golden collision search
	Comments about quantum attacks
	Recommendations

	Conclusions
	Questions?

