
1/25

Stronger and Faster Side-Channel Protections
for CSIDH

Daniel Cervantes-Vázquez 1 Mathilde Chenu 2,3

Jesús-Javier Chi-Doḿınguez 1 and Luca De Feo 4 and
Francisco Rodŕıguez-Henŕıquez 1 and Benjamin Smith 2,3

1Computer Science Department, Cinvestav - IPN, Mexico City, Mexico
2École polytechnique, Institut Polytechnique de Paris, Palaiseau, France

3Inria, équipe-projet GRACE, Université Paris–Saclay, France
4Université Paris Saclay – UVSQ, Versailles, France

October 2, 2019

1/25

Overview

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

1/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];

• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];

• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];

• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];

• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];

• July: This work.

2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.

3/25

CSIDH implementations

• Castryck et al. [3]: The original CSIDH works on Montgomery
curves;

• Jalali et al. [6] keep using Montgomery curves;

• Meyer and Reith [8]: Propose an hybrid CSIDH by using
isogeny construction formulas but on Twisted Edwards curves,
and then mapping into Montgomery form;

• Meyer–Campos–Reith [7], and Onuki et al. [9]: They keep
using the hybrid CSIDH as in [8];

4/25

Our contributions

1) A fully Twisted Edwards version of CSIDH;

2) An efficient projective elligator;

3) The use of Shortest Differential Addition Chains (SDACs) in
the CSIDH algorithm, which are cheaper than Classical Mont-
gomery Ladders.

4) A stronger constant-time CSIDH algorithm without dummy op-
erations.

5/25

CSIDH overview

CSIDH framework [3]:
• Small odd primes numbers `i such that p = 4

∏n
i=1 `i − 1 is

prime number;
• Supersingular elliptic curves in Montgomery form
EA/Fp : y2 = x3 + Ax2 + x with #E (Fp) = p + 1; and
• Positive integer m.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness
of computing a (or b) given the data
colored in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗EA

b∗EA

a

Each `i is required ei times for evaluating the action a ∗ EA

(similarly for b ∗ EA). Formally, this is written as a = le1
1 · · · lenn .

5/25

CSIDH overview

CSIDH framework [3]:
• Small odd primes numbers `i such that p = 4

∏n
i=1 `i − 1 is

prime number;
• Supersingular elliptic curves in Montgomery form
EA/Fp : y2 = x3 + Ax2 + x with #E (Fp) = p + 1; and
• Positive integer m.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness
of computing a (or b) given the data
colored in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗EA

b∗EA

a

Each `i is required ei times for evaluating the action a ∗ EA

(similarly for b ∗ EA). Formally, this is written as a = le1
1 · · · lenn .

6/25

CSIDH overview
The action a ∗ EA defines a path
on the isogeny graph over Fp,
and is determined by an integer
vector (e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular el-
liptic curves over Fp in
Montgomery form;

2) Edges are degree-`i isoge-
nies.

Two types of edges:
isogeny with kernel gener-
ated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y) 7→
(X p,Y p) is the Frobenius map,
i =
√
−1 and thus ip = −i .

Figure 1: Isogeny graph over Fp

with p = 4 · (5 · 13 · 61)− 1. Nodes
are supersingular curves and edges
marked with orange, green , and vi-
olet inks denote isogenies of degree
5, 13 and 61, respectively.

6/25

CSIDH overview
The action a ∗ EA defines a path
on the isogeny graph over Fp,
and is determined by an integer
vector (e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular el-
liptic curves over Fp in
Montgomery form;

2) Edges are degree-`i isoge-
nies. Two types of edges:
isogeny with kernel gener-
ated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y) 7→
(X p,Y p) is the Frobenius map,
i =
√
−1 and thus ip = −i .

Figure 1: Isogeny graph over Fp

with p = 4 · (5 · 13 · 61)− 1. Nodes
are supersingular curves and edges
marked with orange, green , and vi-
olet inks denote isogenies of degree
5, 13 and 61, respectively.

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7→E0x1404

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D→E0x2BF7→E0x1404→E0x5EB

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. In general, the
atcion evaluation is commutative. Secret integer vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x7A0→E0x8EC→E0x25B3→E0x5EB

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

7/25

CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0

7/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

8/25

Constant-time CSIDH algorithm [7, 9]

In both the original CSIDH and the Onuki et al. variants ei ∈
J−mi ,miK, while in Meyer-Campos-Reith variant ei ∈ J0,miK. How-
ever, in constant-time implementations of CSIDH, the exponents ei
are implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ 0 + 0 + · · ·︸ ︷︷ ︸
mi−ei times

,

and then it starts by constructing isogenies with kernel generated
by P ∈ EA[`i , π − sign(ei)] for ei iterations, then performs dummy
isogeny computations for (mi − ei) = 2ki iterations.

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy, dummy→
E0x24D5

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy, dummy→
E0x24D5, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy, dummy→
E0x24D5, dummy, dummy

9/25

Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→
E0x3653, dummy→
E0x25B3→
E0x2BF7, dummy→
E0x56D, dummy, dummy→
E0x24D5, dummy, dummy→
E0x280E

9/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

9/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

10/25

Issue with random point selection

In practice, one uses Elligator, which is an algorithm to efficiently
sample points on a curve and its twist. However, elligator requires

a random element u ∈
r

2, p−1
2

z
and also the inverse of (u2 − 1).

• To avoid a costly inversion of u2 − 1: Meyer, Campos and
Reith, and Onuki et al. follow [2] and precompute a set of ten
pairs (u, (u2 − 1)−1);

• No randomness for u: elligator’s output only depends on the
A-coefficient of the current secret curve, which itself depends
on the secret key.

• Running time of the algorithm varies and it is necessarily
correlated to A and thus to the secret key.

10/25

Issue with random point selection

In practice, one uses Elligator, which is an algorithm to efficiently
sample points on a curve and its twist. However, elligator requires

a random element u ∈
r

2, p−1
2

z
and also the inverse of (u2 − 1).

• To avoid a costly inversion of u2 − 1: Meyer, Campos and
Reith, and Onuki et al. follow [2] and precompute a set of ten
pairs (u, (u2 − 1)−1);

• No randomness for u: elligator’s output only depends on the
A-coefficient of the current secret curve, which itself depends
on the secret key.

• Running time of the algorithm varies and it is necessarily
correlated to A and thus to the secret key.

11/25

Fixing random point selection

To avoid field inversions, we write V = (A : u2 − 1), and we deter-
mine whether V is the abscissa of a projective point on EA. Plugging
V into the homogeneous equation

EA : Y 2Z 2 = X 3Z + AX 2Z 2 + XZ 3

gives
Y 2(u2 − 1)2 =

(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the
Legendre symbol of the right hand side: if it is a square, the points
with projective XZ -coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π− 1] and EA[π+ 1] respectively, otherwise their roles are

swapped.

Consequently, u can be randomly chosen from
r

2, p−1
2

z
,

and elligator’s output only depends on randomness.

11/25

Fixing random point selection

To avoid field inversions, we write V = (A : u2 − 1), and we deter-
mine whether V is the abscissa of a projective point on EA. Plugging
V into the homogeneous equation

EA : Y 2Z 2 = X 3Z + AX 2Z 2 + XZ 3

gives
Y 2(u2 − 1)2 =

(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the
Legendre symbol of the right hand side: if it is a square, the points
with projective XZ -coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π− 1] and EA[π+ 1] respectively, otherwise their roles are

swapped. Consequently, u can be randomly chosen from
r

2, p−1
2

z
,

and elligator’s output only depends on randomness.

11/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

12/25

Twisted Edwards or Montgomery curves?

From [1], we see that the Twisted Edwards curve

Ea,d : ax2 + y2 = 1 + dx2y2

is equivalent to the Montgomery curve

E(A:C) : y2 = x3 + (A/C)x2 + x

with constants

A24p := A + 2C = a , A24m := A− 2C = d , C24 := 4C = a− d .

In particular,

ψ : (X : Z) 7−→ (Y : T) = (X − Z : X + Z)

ψ maps Montgomery XZ-coordinate points into Twisted Edwards
YT-coordinate points, and

ψ−1 : (Y : T) 7−→ (X : Z) = (T + Y : T − Y).

13/25

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery
XZ-projective formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny
evaluation.

In particular, the computational costs of doubling and differential
addition in YT-coordinates are 4M + 2S + 4A, and 4M + 2S + 6A
(the same as XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates
costs 4kM + 2S + 6kA, whereas our YT -coordinate formula costs
4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

13/25

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery
XZ-projective formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny
evaluation.

In particular, the computational costs of doubling and differential
addition in YT-coordinates are 4M + 2S + 4A, and 4M + 2S + 6A
(the same as XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates
costs 4kM + 2S + 6kA, whereas our YT -coordinate formula costs
4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.

13/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

14/25

Classical Montgomery ladders

y(P), y([2]P)

y([3]P), y([4]P)

y([7]P), y([8]P)

y([15]P), y([16]P)

y([31]P), y([32]P)

y([63]P), y([64]P)

y([127]P), y([128]P)

Example: given y(P), y([127]P) can be
computed with 13 differential point oper-
ations.

• Compute y([`]P) requires 2×dlog2 `e−
1 differential point operations.

14/25

Classical Montgomery ladders

y(P), y([2]P)

y([3]P), y([4]P)

y([7]P), y([8]P)

y([15]P), y([16]P)

y([31]P), y([32]P)

y([63]P), y([64]P)

y([127]P), y([128]P)

Example: given y(P), y([127]P) can be
computed with 13 differential point oper-
ations.

• Compute y([`]P) requires 2×dlog2 `e−
1 differential point operations.

15/25

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be
computed with 11 differential point oper-
ations.

• Compute y([`]P) requires ≈ 1.5 ×
dlog2 `e differential point operations,

• SDACs yields a saving of ≈ 25% com-
pared with the cost of the classical
Montgomery ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s
okay to use SDACs!

15/25

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be
computed with 11 differential point oper-
ations.

• Compute y([`]P) requires ≈ 1.5 ×
dlog2 `e differential point operations,

• SDACs yields a saving of ≈ 25% com-
pared with the cost of the classical
Montgomery ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s
okay to use SDACs!

15/25

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be
computed with 11 differential point oper-
ations.

• Compute y([`]P) requires ≈ 1.5 ×
dlog2 `e differential point operations,

• SDACs yields a saving of ≈ 25% com-
pared with the cost of the classical
Montgomery ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s
okay to use SDACs!

15/25

Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be
computed with 11 differential point oper-
ations.

• Compute y([`]P) requires ≈ 1.5 ×
dlog2 `e differential point operations,

• SDACs yields a saving of ≈ 25% com-
pared with the cost of the classical
Montgomery ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s
okay to use SDACs!

15/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

16/25

CSIDH with dummy operations

To mitigate power consumption analysis attacks, the constant-time
algorithms proposed in [7] and [9] always compute the maximal
amount of isogenies allowed by the exponent, using dummy isogeny
computations if needed.

This implies that an attacker can obtain information on the secret
key by injecting faults into variables during the computation. If the
final result is correct, then she knows that the fault was injected in
a dummy operation; if it is incorrect, then the operation was real.

17/25

Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from
sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.

Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel
generated by P ∈ EA[`i , π − sign(ei)] for ei iterations, then alter-
nates between isogenies with kernel generated by P ∈ EA[`i , π − 1]
and P ∈ EA[`i , π + 1] for (mi − ei) = 2ki iterations.

17/25

Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from
sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.
Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel
generated by P ∈ EA[`i , π − sign(ei)] for ei iterations, then alter-
nates between isogenies with kernel generated by P ∈ EA[`i , π − 1]
and P ∈ EA[`i , π + 1] for (mi − ei) = 2ki iterations.

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC→E0x1D50

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC→E0x1D50→E0x13F5

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC→E0x1D50→E0x13F5

→E0x1CDD

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC→E0x1D50→E0x13F5

→E0x1CDD→E0x24D5

18/25

Removing dummy operations

Figure 4: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0→E0x3653→E0x3C4A→E0x5EB

→E0x1404→E0x2BF7→E0x56D

→E0x8EC→E0x1D50→E0x13F5

→E0x1CDD→E0x24D5→E0x280E

18/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

19/25

Running-time: field operations

Table 1: Field operation counts for constant-time CSIDH. Counts are
given in millions of operations, averaged over 1024 random experiments.
The performance ratio uses [7] as a baseline, considers only multiplication
and squaring operations, and assumes M = S .

Implementation CSIDH Algorithm M S A Ratio
Castryck et al. [3] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [7] unmodified 1.054 0.410 1.053 1.00

Onuki et al. [9] unmodified 0.733 0.244 0.681 0.67

This work
MCR-style 0.901 0.309 0.965 0.83

OAYT-style 0.657 0.210 0.691 0.59
No-dummy 1.319 0.423 1.389 1.19

20/25

Running-time: measured clock cycles

Table 2: Clock cycle counts for constant-time CSIDH implementations,
averaged over 1024 experiments. The ratio is computed using [7] as
baseline implementation.

Implementation CSIDH algorithm Mcycles Ratio
Castryck et al. [3] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [7] unmodified 395 1.00

This work
MCR-style 337 0.85

OAYT-style 239 0.61
No-dummy 481 1.22

20/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions

21/25

Conclusions

1) Previous implementations failed at being constant time because
of a subtle mistake (Elligator was being used in an insecure
way).

2) We fixed the problem, and proposed new improvements, to
achieve the most efficient version of CSIDH protected against
timing and simple power analysis attacks to date.

3) We proposed a protection against some fault-injection and tim-
ing attacks that only comes at a cost of a twofold slowdown.

4) We also sketched an alternative version of CSIDH “for the para-
noid”, with much stronger security guarantees, however at the
moment this version seems too costly for the security benefits.

22/25

Further work

In SIDH one uses strategies for an efficient isogeny construction.
Thus, one could ask:

• Are strategies à la SIDH applicable to CSIDH?

Yes, they are!!!

• Do strategies à la SIDH help to improve CSIDH?

We will
know in a couple of days!!!

22/25

Further work

In SIDH one uses strategies for an efficient isogeny construction.
Thus, one could ask:

• Are strategies à la SIDH applicable to CSIDH? Yes, they are!!!

• Do strategies à la SIDH help to improve CSIDH?

We will
know in a couple of days!!!

22/25

Further work

In SIDH one uses strategies for an efficient isogeny construction.
Thus, one could ask:

• Are strategies à la SIDH applicable to CSIDH? Yes, they are!!!

• Do strategies à la SIDH help to improve CSIDH?

We will
know in a couple of days!!!

22/25

Further work

In SIDH one uses strategies for an efficient isogeny construction.
Thus, one could ask:

• Are strategies à la SIDH applicable to CSIDH? Yes, they are!!!

• Do strategies à la SIDH help to improve CSIDH? We will
know in a couple of days!!!

22/25

Thank you for your attention

I look forward to your comments and questions.
e-mail: jjchi@computacion.cs.cinvestav.mx

Our software library is freely available from

https://github.com/JJChiDguez/csidh .

We thank Prof. Onuki for his comments about an incorrect claim
in an earlier version of this work.

https://github.com/JJChiDguez/csidh

21/25

References I

I Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and
Christiane Peters.

Twisted Edwards curves.

In Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT
2008, volume 5023 of Lecture Notes in Computer Science, pages
389–405. Springer, 2008.

I Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz
Panny.

Quantum circuits for the CSIDH: optimizing quantum evaluation of
isogenies.

In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II, pages 409–441, 2019.

22/25

References II

I Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes.

CSIDH: an efficient post-quantum commutative group action.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part III, pages 395–427, 2018.

I Jean Marc Couveignes.

Hard homogeneous spaces.

Cryptology ePrint Archive, Report 2006/291, 2006.

23/25

References III

I Luca De Feo, Jean Kieffer, and Benjamin Smith.

Towards practical key exchange from ordinary isogeny graphs.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part III, pages 365–394, 2018.

I Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, and
David Jao.

Towards optimized and constant-time CSIDH on embedded devices.

In Constructive Side-Channel Analysis and Secure Design, pages
215–231. Springer International Publishing, 2019.

24/25

References IV

I Michael Meyer, Fabio Campos, and Steffen Reith.

On lions and elligators: An efficient constant-time implementation of
CSIDH.

In Post-Quantum Cryptography - 10th International Workshop,
PQCrypto 2019, 2019.

I Michael Meyer and Steffen Reith.

A faster way to the CSIDH.

In Progress in Cryptology - INDOCRYPT 2018 - 19th International
Conference on Cryptology in India, New Delhi, India, December 9-12,
2018, Proceedings, pages 137–152, 2018.

I Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi
Takagi.

A faster constant-time algorithm of CSIDH keeping two torsion points.

To appear in IWSEC 2019 – The 14th International Workshop on
Security, 2019.

25/25

References V

I Alexander Rostovtsev and Anton Stolbunov.

Public-key cryptosystem based on isogenies.

Cryptology ePrint Archive, Report 2006/145, 2006.

I Anton Stolbunov.

Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves.

Advances in Mathematics of Communication, 4(2), 2010.

	CSIDH overview
	Constant-time CSIDH algorithm
	Improvements to constant-time CSIDH algorithm
	Fixing random point selection
	Twisted Edwards or Montgomery curves?
	Addition chains for a faster scalar multiplication
	Removing dummy operations

	Experimental results
	Conclusions

