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4Université Paris Saclay – UVSQ, Versailles, France

October 2, 2019



1/25

Overview

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions



1/25

Outline

1 CSIDH overview

2 Constant-time CSIDH algorithm

3 Improvements to constant-time CSIDH algorithm
Fixing random point selection
Twisted Edwards or Montgomery curves?
Addition chains for a faster scalar multiplication
Removing dummy operations

4 Experimental results

5 Conclusions



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

Before CSIDH (ordinary curves):

• Alexander Rostovtsev and Anton Stolbunov [10];

• Jean-Marc Couveignes [4];

• Anton Stolbunov [11];

• Luca De Feo, Jean Kieffer, and Benjamin Smith [5];



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];

• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];

• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];

• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];

• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];

• July: This work.



2/25

Timeline of CSIDH

20
06

20
10

20
18

20
19

CSIDH (supersingular curves):

• April: Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH [3];

• August: Meyer and Reith [8];
• Constant-time implementations:

• August: Jalali et al. [6];
• October: Bernstein, Lange, Martindale, and Panny [2];
• December: Meyer, Campos, and Reith [7];
• April: Onuki, Aikawa, Yamazaki, and Takagi [9];
• July: This work.



3/25

CSIDH implementations

• Castryck et al. [3]: The original CSIDH works on Montgomery
curves;

• Jalali et al. [6] keep using Montgomery curves;

• Meyer and Reith [8]: Propose an hybrid CSIDH by using
isogeny construction formulas but on Twisted Edwards curves,
and then mapping into Montgomery form;

• Meyer–Campos–Reith [7], and Onuki et al. [9]: They keep
using the hybrid CSIDH as in [8];
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Our contributions

1) A fully Twisted Edwards version of CSIDH;

2) An efficient projective elligator;

3) The use of Shortest Differential Addition Chains (SDACs) in
the CSIDH algorithm, which are cheaper than Classical Mont-
gomery Ladders.

4) A stronger constant-time CSIDH algorithm without dummy op-
erations.
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CSIDH overview

CSIDH framework [3]:
• Small odd primes numbers `i such that p = 4

∏n
i=1 `i − 1 is

prime number;
• Supersingular elliptic curves in Montgomery form
EA/Fp : y2 = x3 + Ax2 + x with #E (Fp) = p + 1; and
• Positive integer m.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness
of computing a (or b) given the data
colored in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗EA

b∗EA

a

Each `i is required ei times for evaluating the action a ∗ EA

(similarly for b ∗ EA). Formally, this is written as a = le1
1 · · · lenn .



5/25

CSIDH overview

CSIDH framework [3]:
• Small odd primes numbers `i such that p = 4

∏n
i=1 `i − 1 is

prime number;
• Supersingular elliptic curves in Montgomery form
EA/Fp : y2 = x3 + Ax2 + x with #E (Fp) = p + 1; and
• Positive integer m.

General description CSIDH:

The shared secret key is (a · b) ∗ EA.

The security is given by the hardness
of computing a (or b) given the data
colored in red ink.

EA a ∗ EA

b ∗ EA (a · b) ∗ EA

a

b b

a∗EA

b∗EA

a

Each `i is required ei times for evaluating the action a ∗ EA

(similarly for b ∗ EA). Formally, this is written as a = le1
1 · · · lenn .



6/25

CSIDH overview
The action a ∗ EA defines a path
on the isogeny graph over Fp,
and is determined by an integer
vector (e1, . . . , en) ∈ J−m,mKn:

1) Nodes are supersingular el-
liptic curves over Fp in
Montgomery form;

2) Edges are degree-`i isoge-
nies.

Two types of edges:
isogeny with kernel gener-
ated by

2.a) (x , y) ∈ EA[`i , π − 1], or
2.b) (x , iy) ∈ EA[`i , π + 1].

Here, x , y ∈ Fp, π : (X ,Y ) 7→
(X p,Y p) is the Frobenius map,
i =
√
−1 and thus ip = −i .

Figure 1: Isogeny graph over Fp

with p = 4 · (5 · 13 · 61)− 1. Nodes
are supersingular curves and edges
marked with orange, green , and vi-
olet inks denote isogenies of degree
5, 13 and 61, respectively.
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CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (−1, 2, 1) ∈ J−2, 2K3:

E0
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vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x3A7D
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CSIDH overview

Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. In general, the
atcion evaluation is commutative. Secret integer vector (−1, 2, 1) ∈ J−2, 2K3:

E0→E0x7A0→E0x8EC→E0x25B3→E0x5EB
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Figure 2: Action evaluation over Fp with p = 4 · (5 · 13 · 61)− 1. Secret integer
vector (1,−2,−1) ∈ J−2, 2K3 has inverse (−1, 2, 1) ∈ J−2, 2K3:

E0x5EB→E0x1D50→E0x8EC→E0x56D→E0
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Constant-time CSIDH algorithm [7, 9]

In both the original CSIDH and the Onuki et al. variants ei ∈
J−mi ,miK, while in Meyer-Campos-Reith variant ei ∈ J0,miK. How-
ever, in constant-time implementations of CSIDH, the exponents ei
are implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ 0 + 0 + · · ·︸ ︷︷ ︸
mi−ei times

,

and then it starts by constructing isogenies with kernel generated
by P ∈ EA[`i , π − sign(ei )] for ei iterations, then performs dummy
isogeny computations for (mi − ei ) = 2ki iterations.
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Constant-time CSIDH algorithm [7, 9]

Figure 3: Action evaluation over Fp

with p = 4 · (5 · 13 · 61) − 1.
Secret integer vector (4, 0,−2) ∈{
− 4,−2, 0, 2, 4

}3
.

E0
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Issue with random point selection

In practice, one uses Elligator, which is an algorithm to efficiently
sample points on a curve and its twist. However, elligator requires

a random element u ∈
r

2, p−1
2

z
and also the inverse of (u2 − 1).

• To avoid a costly inversion of u2 − 1: Meyer, Campos and
Reith, and Onuki et al. follow [2] and precompute a set of ten
pairs (u, (u2 − 1)−1);

• No randomness for u: elligator’s output only depends on the
A-coefficient of the current secret curve, which itself depends
on the secret key.

• Running time of the algorithm varies and it is necessarily
correlated to A and thus to the secret key.
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Fixing random point selection

To avoid field inversions, we write V = (A : u2 − 1), and we deter-
mine whether V is the abscissa of a projective point on EA. Plugging
V into the homogeneous equation

EA : Y 2Z 2 = X 3Z + AX 2Z 2 + XZ 3

gives
Y 2(u2 − 1)2 =

(
(A2u2 + (u2 − 1)2

)
A(u2 − 1).

We can test the existence of a solution for Y by computing the
Legendre symbol of the right hand side: if it is a square, the points
with projective XZ -coordinates

T+ = (A : u2 − 1), T− = (−Au2 : u2 − 1)

are in EA[π− 1] and EA[π+ 1] respectively, otherwise their roles are

swapped.

Consequently, u can be randomly chosen from
r

2, p−1
2

z
,

and elligator’s output only depends on randomness.
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Twisted Edwards or Montgomery curves?

From [1], we see that the Twisted Edwards curve

Ea,d : ax2 + y2 = 1 + dx2y2

is equivalent to the Montgomery curve

E(A:C) : y2 = x3 + (A/C )x2 + x

with constants

A24p := A + 2C = a , A24m := A− 2C = d , C24 := 4C = a− d .

In particular,

ψ : (X : Z ) 7−→ (Y : T ) = (X − Z : X + Z )

ψ maps Montgomery XZ-coordinate points into Twisted Edwards
YT-coordinate points, and

ψ−1 : (Y : T ) 7−→ (X : Z ) = (T + Y : T − Y ).



13/25

Twisted Edwards or Montgomery curves?

Using previous formulas, one can re-write the following Montgomery
XZ-projective formulas in terms of Twisted Edwards YT-coordinates:

• Montgomery XZ-coordinates doubling

• Montgomery XZ-coordinates differential addition

• Montgomery XZ-coordinates degree-(2k + 1) isogeny
evaluation.

In particular, the computational costs of doubling and differential
addition in YT-coordinates are 4M + 2S + 4A, and 4M + 2S + 6A
(the same as XZ-coordinates).

Additionally, degree-(2k + 1) isogeny evaluation in XZ -coordinates
costs 4kM + 2S + 6kA, whereas our YT -coordinate formula costs
4kM + 2S + (2k + 4)A, thus saving 4k − 4 field additions.
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Classical Montgomery ladders

y(P), y([2]P)

y([3]P), y([4]P)

y([7]P), y([8]P)

y([15]P), y([16]P)

y([31]P), y([32]P)

y([63]P), y([64]P)

y([127]P), y([128]P)

Example: given y(P), y([127]P) can be
computed with 13 differential point oper-
ations.

• Compute y([`]P) requires 2×dlog2 `e−
1 differential point operations.
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Shortest differential addition chains
(SDACs)

y(P), y([2]P)

y([3]P) y([5]P)

y([8]P) y([13]P)

y([18]P) y([31]P)

y([44]P) y([57]P)

y([70]P)

y([127]P)

Example: given y(P), y([127]P) can be
computed with 11 differential point oper-
ations.

• Compute y([`]P) requires ≈ 1.5 ×
dlog2 `e differential point operations,

• SDACs yields a saving of ≈ 25% com-
pared with the cost of the classical
Montgomery ladder,

• SDACs are not constant-time,

• But each scalar ` is public thus it’s
okay to use SDACs!
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CSIDH with dummy operations

To mitigate power consumption analysis attacks, the constant-time
algorithms proposed in [7] and [9] always compute the maximal
amount of isogenies allowed by the exponent, using dummy isogeny
computations if needed.

This implies that an attacker can obtain information on the secret
key by injecting faults into variables during the computation. If the
final result is correct, then she knows that the fault was injected in
a dummy operation; if it is incorrect, then the operation was real.
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Removing dummy operations

For our new approach, the exponents ei are uniformly sampled from
sets

S(mi ) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers.

Consequently, the exponents ei can implicitly interpreted as

|ei | = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

and then our approach starts by constructing isogenies with kernel
generated by P ∈ EA[`i , π − sign(ei )] for ei iterations, then alter-
nates between isogenies with kernel generated by P ∈ EA[`i , π − 1]
and P ∈ EA[`i , π + 1] for (mi − ei ) = 2ki iterations.
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Running-time: field operations

Table 1: Field operation counts for constant-time CSIDH. Counts are
given in millions of operations, averaged over 1024 random experiments.
The performance ratio uses [7] as a baseline, considers only multiplication
and squaring operations, and assumes M = S .

Implementation CSIDH Algorithm M S A Ratio
Castryck et al. [3] unprotected, unmodified 0.252 0.130 0.348 0.26

Meyer–Campos–Reith [7] unmodified 1.054 0.410 1.053 1.00

Onuki et al. [9] unmodified 0.733 0.244 0.681 0.67

This work
MCR-style 0.901 0.309 0.965 0.83

OAYT-style 0.657 0.210 0.691 0.59
No-dummy 1.319 0.423 1.389 1.19
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Running-time: measured clock cycles

Table 2: Clock cycle counts for constant-time CSIDH implementations,
averaged over 1024 experiments. The ratio is computed using [7] as
baseline implementation.

Implementation CSIDH algorithm Mcycles Ratio
Castryck et al. [3] unprotected, unmodified 155 0.39

Meyer–Campos–Reith [7] unmodified 395 1.00

This work
MCR-style 337 0.85

OAYT-style 239 0.61
No-dummy 481 1.22
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Conclusions

1) Previous implementations failed at being constant time because
of a subtle mistake (Elligator was being used in an insecure
way).

2) We fixed the problem, and proposed new improvements, to
achieve the most efficient version of CSIDH protected against
timing and simple power analysis attacks to date.

3) We proposed a protection against some fault-injection and tim-
ing attacks that only comes at a cost of a twofold slowdown.

4) We also sketched an alternative version of CSIDH “for the para-
noid”, with much stronger security guarantees, however at the
moment this version seems too costly for the security benefits.
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Further work

In SIDH one uses strategies for an efficient isogeny construction.
Thus, one could ask:

• Are strategies à la SIDH applicable to CSIDH?

Yes, they are!!!

• Do strategies à la SIDH help to improve CSIDH?

We will
know in a couple of days!!!
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Thank you for your attention

I look forward to your comments and questions.
e-mail: jjchi@computacion.cs.cinvestav.mx

Our software library is freely available from

https://github.com/JJChiDguez/csidh .

We thank Prof. Onuki for his comments about an incorrect claim
in an earlier version of this work.

https://github.com/JJChiDguez/csidh
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