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Abstract. The use of multi-objective evolutionary algorithms (MOEAs)
that employ a set of convex weight vectors as search directions, reference
set or as part of a quality indicator has been widely extended. How-
ever, a recent study indicate that these MOEAs do not perform very
well when tackling multi-objective optimization problem (MOPs), hav-
ing different Pareto front geometries. Hence, it is necessary to propose
MOEAs whose performance is not strongly correlated to specific Pareto
front shapes. In this paper, we propose a MOEA that combines the
individual effect of two indicator-based density estimators that do not
employ convex weight vectors. The selected indicators are the IGD+ and
the s-energy which promote convergence and diversity of solutions, re-
spectively. Our proposed approach, called CRS+-EMOA, was compared
with MOEAs using convex weight vectors (NSGA-III, MOEA/D and
MOMBI2) and ones not using this set of vectors (∆p-MOEA and GDE-
MOEA) on MOPs belonging to the test suites DTLZ, DTLZ−1, WFG
and WFG−1. Experimental results show that CRS+-EMOA outperforms
the considered MOEAs, regarding the hypervolume and Solow-Polasky
indicators, on most of the test problems and its performance does not
depend on the Pareto front shape of the problems.

Keywords: Multi-Objective Optimization, Quality Indicators, Multi-
Indicator Density Estimation

1 Introduction

In the last 30 years, Multi-Objective Evolutionary Algorithms (MOEAs), which
are population-based and gradient-free metaheuristics, have arisen as a popu-
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lar approach to solve problems that involve the simultaneous optimization of
several, often conflicting, objective functions [1].These problems are so-called
multi-objective optimization problems (MOPs). MOEAs employ the principles
of the natural evolution of individuals in order to drive a set of objective vectors
towards the Pareto optimal front, that represent the solution to a MOP. In this
regard, solving a MOP involves finding the best possible trade-offs among its
objectives. The particular set that yields the optimum values is known as the
Pareto Optimal Set (P∗) and its image in objective space is known as the Pareto
Optimal Front (PF∗).

Currently, there are different design strategies of MOEAs, such as decompo-
sition of the MOP into numerous single-objective optimization problems [2], the
use of reference sets in order to attract the population towards the Pareto front
[3], and the generation of selection mechanisms based on quality indicators1 [4].
A wide variety of state-of-the-art MOEAs based on the strategies above men-
tioned commonly employ a set of convex weight vectors as search directions for
the decomposition, in a method to construct reference sets, or as part of the
definition of a quality indicator. A vector w ∈ Rm is a convex weight vector
if

∑m
i=1 wi = 1 and wi ≥ 0 for all i = 1, . . . ,m. These weight vectors lie on

an (m − 1)-simplex. However, Ishibuchi et al. [5] empirically showed that the
use of convex weight vectors overspecializes MOEAs on MOPs whose Pareto
fronts are strongly correlated to the simplex formed by such weight vectors. In
other words, such MOEAs are unable to produce good results when tackling
MOPs whose Pareto fronts are not highly coupled with the (m− 1)-simplex. In
consequence, more general MOEAs need to be designed to avoid this overspe-
cialization on specific benchmark problems such as the DTLZ and WFG test
suites.

Other MOEAs do not use in any of their mechanisms a set of convex weight
vectors. On the one hand, the Nondominated Sorting Genetic Algorithm II
(NSGA-II) [6] uses Pareto dominance2 in its main selection mechanism and
crowding distance as the second selection mechanism. However, the selection
pressure of NSGA-II dilutes when tackling MaOPs. Additionally, the crowding
distance density estimator cannot produce evenly distributed Pareto fronts. On
the other hand, the S Metric Selection Evolutionary Multi-Objective Algorithm
(SMS-EMOA) [7] is a steady-state MOEA that replaces the crowding distance
of NSGA-II by a density estimator based on the hypervolume indicator (HV)
that measures convergence and distribution simultaneously. Although HV is the
only unary Pareto-compliant3 indicator, its use in MOEAs is prohibited since its
computational cost exponentially increases as the number of objectives does. In

1 A unary indicator I is a function that assigns a real value to set of points A =
{a1, . . . ,aN}, where ai ∈ Rm.

2 Given u,v ∈ Rm, u Pareto dominates v (denoted as u ≺ v) if and only if ∀i =
1, . . . ,m, ui ≤ vi and there exists at least an index j ∈ {1, . . . ,m} : uj < vj .

3 Let A and B be two non-empty sets of m-dimensional vectors and let I be a unary
indicator. I is Pareto-compliant if and only if A dominates B implies I(A) > I(B)
(assuming maximization of I).
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2015, Menchaca-Méndez and Coello proposed an environmental selection based
on the Generational Distance (GD) indicator [8] coupled with a diversity mech-
anism that uses the ε dominance to divide the objective space into hypercubes
where the solutions are distributed. A clear disadvantage of GDE-MOEA is the
determination of the ε value in order to divide high-dimensional objective spaces
which impact the generation of evenly distributed solutions. Finally, ∆p-MOEA,
proposed by Menchaca et al. [9], is an improvement of GDE-MOEA but instead
of using GD in the selection mechanism, it uses the ∆p indicator. ∆p-MOEA
improves the diversity of solutions, but it still depends on the calculation of the
ε value to construct a reference set.

In order to overcome the above mentioned difficulties of MOEAs that do not
use weight vectors, in this paper we propose an MOEA that takes advantage of
the combination/synergy of the individual effect of two density estimators: one
based on the IGD+ indicator [10] and the other based on the s-energy indicator
[11]. The main idea of our Evolutionary Multi-Objective Algorithm based on the
Combination of the Riesz s-energy and IGD∗ (CRS+-EMOA) is to analyze the
convergence behavior during the search process statistically.. If the convergence
behavior is stagnated, the generation of evenly distributed solutions is promoted
using s-energy; otherwise, the IGD+-based density estimator will drive the pop-
ulation to PF∗.

The remainder of this paper is organized as follows. Section 2 gives some
required definitions to the understanding of the paper. Our proposed approach
is introduced in Sect. 3. The experimental results are discussed in Sect. 4. Finally,
Section 5 outlines the main conclusions and future work.

2 Background

In this work, we focus, without loss of generality, on unconstrained MOPs that
minimize all the objective functions. A MOP is formally defined as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T , (1)

where x ∈ Ω ⊆ Rn is the vector of decision variables and Ω is the decision
variable space. fi : Rn → R, i = 1, 2, . . . ,m are the objective functions, where
m ≥ 2. MOPs having four or more objective functions are called many-objective
optimization problems (MaOPs).

In the following, two unary quality indicators are described. For this purpose,
let A represent an approximation to PF∗ and Z ⊂ Rm be a reference set. On
the one hand, Ishibuchi et al. proposed the Inverted Generational Distance plus
(IGD+) indicator in 2015 [10]. This indicator measures the average distance
between Z and A, using a modified Euclidean distance that takes into account
Pareto dominance. Due to this modified distance, IGD+ is a weakly Pareto
compliant indicator. It is mathematically defined as follows:

IGD+(A,Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a, z), (2)
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where d+(a, z) =
√∑m

k=1 max(ai − zi, 0)2 is the proposed modified Euclidean
distance. On the other hand, Hardin and Saff proposed the s-energy indicator
[11] in order to measure the even distribution of a set of points in k-dimensional
manifolds. Its mathematical definition is given by the next formula:

Es(A) =
∑
i 6=j

‖ai − aj‖−s (3)

where s > 0 is a fixed parameter that controls the grade of uniformity of the
solutions in A. Its minimization leads to evenly distributed solutions if s ≥ k.

3 Our Proposed Approach

Quality indicators can be integrated into MOEAs in three different ways: 1) in
the environmental selection mechanism, 2) as an update rule for archives, and 3)
as density estimators (DEs). From these approaches, the latter has been widely
used. An indicator-based density estimator (IB-DE) is the secondary selection
mechanism of an MOEA. IB-DEs impose a total order among the solutions of
an approximation set by calculating the individual contribution of each solution
to the indicator value. Then, the worst-contributing solution is deleted from the
population. In this work, we employed IGD+ and s-energy as IB-DEs. Regarding
IGD+, the individual contribution C of a solution a ∈ A is defined as follows:
CIGD+(a,A,Z) = |IGD+(A,Z)− IGD+(A \ {a},Z)|. On the other hand, for s-
energy, the individual contribution of a ∈ A is given by: CEs(a,A) = 1

2 [Es(A)−
Es(A \ {a})]. On the basis of the above equations, IGD+-DEs and Es-DE are
respectively defined as follows:

aworst = arg min
a∈A

CIGD+(a,A,Z), and (4)

aworst = arg max
a∈A

CEs(a,A), (5)

where aworst denotes the solution having the wost-contributing value.
Algorithm 1 describes our proposed approach, called CRS+-EMOA. CRS+-

EMOA is a steady-state MOEA that employs Pareto dominance in its environ-
mental selection mechanism (using the nondominated sorting algorithm in line 6)
and an IB-DE as secondary selection criterion. The main idea of CRS+-EMOA
is to exploit the properties of IGD+ and s-energy by combining the individual
effect of the corresponding IB-DEs. In other words, we want to drive the popu-
lation towards the Pareto front using IGD+-DE and, simultaneously, generating
an evenly distributed approximation to the Pareto front through Es-DE. To this
end, CRS+-EMOA switches between the two IB-DEs depending on a statistical
analysis of the convergence behavior of the population, using an approximation
to the hypervolume indicator (denoted as HVappr). HVappr is a simplification of
the proposal of Ishibuchi et al. [12] and it sums up all the distances between an
anti-optimal reference point zmax and the set of current nondominated solutions
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Fig. 1: (a) Hypervolume approximation sums up all the distances between the
reference point and each nondominated solution, (b) linear model of the conver-
gence behavior created using the last Tw measures of HVappr.

(see Fig. 1a). At each iteration t, in line 7, zmax is updated using the worst
values of the current nondominated solutions and, then, HVappr(t) is computed
such that the obtained value is stored in a circular array SHV of size Tw. After
the first Tw generations, SHV will be full, and we can statistically analyze at
each iteration the last Tw samples of HVappr as shown in Fig. 1b. In line 9, the
mean µ and the standard deviation σ of the samples are computed such that
the coefficient4 of variation β = σ/µ is calculated. Additionally, the angle θ of a
linear regression model of the samples is computed. Based on β and θ, we can
exploit the properties of a certain IB-DE. If the number k of ranks produced
by the nondominated sorting algorithm is equal to one and it holds that β ≤ β̄
and θ ∈ [−θ̄, θ̄] (where β̄ and θ̄ are user-supplied parameters), it means that
the convergence behavior is stagnated since there is not too much variation of
HVappr and the linear model cannot be consider as ascending or descending. In
consequence, we have to promote diversity using Es-DE in line 11. Otherwise, if
Lk > 1, IGD+-DE is selected in line 14 in furtherance of improving the conver-
gence of the population. In case |Lk| = 1, the sole individual in Lk is selected to
elimination. Finally, the selected solution jworst is deleted from the population,
and a new generation is created.

4 β is a standardized measure of dispersion that shows the extent of variability to the
mean of the population.
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Algorithm 1 CRS+-EMOA general framework

Require: Tw, β̄, θ̄
Ensure: Pareto front Approximation
1: Randomly initialize population P
2: t← 0
3: while stopping criterion is not fulfilled do
4: q ← V ariation(P )
5: Q← P

⋃
{q}

6: {L1, L2, . . . , Lk} ← nondominated-sorting(Q)
7: Update reference point zmax using L1

8: SHV[t mod Tw]← HVappr(t)
9: Statistically analyze the last Tw samples in SHV and generate β and θ

10: if k = 1 and β ≤ β̄ and θ ∈ [−θ̄, θ̄] then
11: jworst = arg maxa∈L1 CEs(a, L1)
12: else
13: if |Lk| > 1 then
14: jworst = arg mina∈Lk CIGD+(a, Lk, L1)|
15: else
16: jworst is equal to the sole individual in Lk

17: P ← Q \ {jworst}
18: t← t+ 1
19: return P

4 Experimental Results

In this section, we analyze the performance of CRS+EMOA5 in comparison with
different state-of-the-art MOEAs, namely NSGA-III [3], MOEA/D [2], MOMBI2
[4], ∆p-MOEA [9] and GDE-MOEA [8]. The adopted MOEAs are classified into
two main groups: MOEAs based on convex weight vectors and MOEAs not us-
ing convex weight vectors. NSGA-III6, MOEA/D7 and MOMBI28 belong to the
first group while the remaining MOEAs9 belong to the other group. We adopted
MOPs of the benchmarks DTLZ and WFG [13], as well as from the minus ver-
sions of them denoted as DTLZ−1 and WFG−1 that were proposed by Ishibuchi
et al. [5]. The use of the minus versions of the benchmarks is to determine the
performance of the considered MOEAs on MOPs whose Pareto fronts are not
correlated to the simplex formed by a set of convex weight vectors. Additionally,

5 The source code of CRS+-EMOA is available at http://computacion.cs.

cinvestav.mx/~jfalcon/CRS.html.
6 We used the implementation available at: http://web.ntnu.edu.tw/~tcchiang/

publications/nsga3cpp/nsga3cpp.htm.
7 We used the implementation available at: http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm.

8 We used the implementation available at http://computacion.cs.cinvestav.mx/

~rhernandez/.
9 The source code of ∆p-MOEA and GDE-MOEA was provided by its author Adriana

Menchaca Méndez.

http://computacion.cs.cinvestav.mx/~jfalcon/CRS.html
http://computacion.cs.cinvestav.mx/~jfalcon/CRS.html
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://computacion.cs.cinvestav.mx/~rhernandez/
http://computacion.cs.cinvestav.mx/~rhernandez/
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the Pareto fronts of these MOPs cover a wide range of geometries such as linear,
concave, degenerated, disconnected and mixed. In each case, we employed 3, 5
and 10 objective functions. In order to measure the performance of CRS+-EMOA
and the adopted MOEAs, we applied the hypervolume and the Solow-Polasky
indicators [14] for measuring convergence and diversity, respectively. For each
MOEA in each test instance, we performed 30 independent executions.

4.1 Parameters settings

Table 1: Parameters adopted in our experiments.
Objectives (m) 3 5 7 10

Population size 120 126 210 220

Objective function
evaluations (×103)

50 70 90 120

W
F

G variables (n) 26 30 34 40
position-related

parameters
2 4 6 9

Weight-vector
partitions (H)

14 5 4 3

Since our approach and all the considered MOEAs are genetic algorithms
that use Simulated Binay Crossover and Polynomial Mutation as variation op-
erators, we set the crossover probability (Pc), crossover distribution index (Nc),
mutation probability (Pm), and the mutation distribution index (Nm) as fol-
lows. For MOPs having three objective functions Pc = 0.9 and Nc = 20, while
for MaOPs Pc = 1.0 and Nc = 30. In all cases, Pm = 1/n, where n is the
number of decision variables, and Nm = 20. Table 1 shows the population size
N , objective function evaluations (employed as the stopping criterion) and the
parameter H for the generation of the set of convex weight vectors.It is worth
noting that we set N = CH+m−1

m−1 . Table 1 also describes the number of variables
and position-related parameters employed for the WFG and WFG−1 problems.
Considering the DTLZ and DTLZ−1 instances, the number of variables is equal
to n = m+K − 1, where K = 5 for DTLZ1 and DTLZ1−1, K = 10 for DTLZ2,
DTLZ5 and their minus versions, and K = 20 for DTLZ7 and DTLZ7−1. For
MOEA/D, the neighborhood size was set to 20 in all cases. Regarding CRS+-
EMOA, we employed Tw = N , β̄ = 0.1 and θ̄ = 0.25 degrees for all instances.

4.2 Discussion of results

Tables 2 and 3 show the mean and standard deviation (in parentheses) obtained
by all the compared algorithms for the hypervolume and Solow-Polasky indica-
tors, respectively. The two best values among the MOEAs are emphasized in
grayscale, where the darker tone corresponds to the best value. Aiming to have
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the statistical confidence in the results, we performed a one-tailed Wilcoxon test
using a significance level of 0.05. Based on the Wilcoxon test, the symbol # is
placed when CRS+-EMOA performs better than other MOEA in a statistically
significant way.

Regarding the hypervolume indicator, CRS+-EMOA is the best algorithm
since it obtained the first place in 50% of the test problems. The second place
corresponds to NSGA-III because it is the best MOEA in 8 out of 42 problems.
However, it is worth emphasizing that for the minus benchmarks, NSGA-III
only obtained one first place, specifically for DTLZ7−1 in 3 objective functions.
In this regard, MOEA/D and MOMBI2 have just one first place in these mi-
nus benchmarks, and the remaining of their first places belong to the original
DTLZ and WFG test suites. In consequence, it is clear the overspecialization
of MOEAs using convex weight vectors on these benchmarks. Considering ∆p-
MOEA and GDE-MOEA, their performance is not so high. In fact, GDE-MOEA
never obtains the first place and ∆p-MOEA is the best algorithm in four test
instances.

The Solow-Polasky indicator supports the good results of CRS+-EMOA. This
indicator measures the number of species present in the population. Thus, a
larger value of the indicator is better because it means a good diversity of solu-
tions. Our proposed approach produces well-distributed Pareto fronts in 26 out
of 42 test instances (see Fig. 2). As a matter of fact, in most of the cases when
CRS+-EMOA obtains the best HV value, it also obtains the best Solow-Polasky
value. Hence, this a first insight that the synergy between IGD+ and s-energy is
actually responsible of its good performance in both convergence and diversity.
Regarding the other MOEAs, NSGA-III and ∆p-MOEA tie in second place since
they obtained the best indicator value in 5 problems. Once again, NSGA-III can
only produce good results for the original DTLZ and WFG problems. The worst
algorithm regarding this indicator is related to MOMBI2.

For DTLZ1 and DTLZ1−1 that have a linear Pareto front, CRS+-EMOA
does not obtain the best HV value. However, the Solow-Polasky indicator demon-
strates that our approach has a better diversity. The top part of Fig. 2 shows
the DTLZ1−1 fronts produced by all MOEAs, and it is evident that CRS+-
EMOA produces an evenly distributed front in comparison with the adopted
MOEAs. MOEA/D and MOMBI2 generate numerous solutions in the bound-
ary of the front, while ∆p-MOEA, GDE-MOEA and NSGA-III do not produce
well-distributed solutions. For convex problems, i.e., DTLZ2−1 and DTLZ5−1,
it is evident that CRS+-EMOA has a good performance. This is because it en-
tirely covers the Pareto front, unlike the other MOEAs that do not. This effect
is illustrated in the second row of Fig. 2. For more complicated problems such
as DTLZ7 and WFG2−1 that prove the ability of MOEA to manage subpopula-
tions, it is evident from the Figure that CRS+-MOEA produces better results.
In the light of these results, we can claim that CRS+-EMOA is a more gen-
eral optimizer because its performance is not strongly linked to certain types of
benchmark problems.
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Table 2: Mean and standard deviation (in parentheses) of the Hypervolume
indicator. A symbol # is placed when CRS+-EMOA performed significantly
better than the other approaches based on a one-tailed Wilcoxon test using a
significance level of α = 0.05. The two best values are shown in gray scale, where
the darker tone corresponds to the best value.
Problema Dim. CRS+-EMOA NSGA-III MOEA/D MOMBI2 ∆p-MOEA GDE-MOEA

DTLZ1
3

9.739039e-01
(3.858675e-04)

9.741141e-01
(3.120293e-04)

9.740945e-01
(2.619649e-04)

9.663444e-01#
(1.080932e-03)

9.413310e-01#
(1.964370e-02)

9.676446e-01#
(2.362618e-03)

5
9.877798e-01

(3.117917e-03)
9.986867e-01

(3.379577e-05)
9.986355e-01

(3.735697e-05)
9.904662e-01

(1.120127e-03)
3.320501e-02#
(8.565974e-02)

4.840903e-01#
(4.857106e-01)

10
9.963635e-01

(1.065991e-03)
9.999939e-01

(2.139857e-06)
9.996746e-01

(1.025281e-04)
9.961538e-01

(9.574496e-04)
3.040882e-02#
(5.310077e-02)

0.000000e+00#
(0.000000e+00)

DTLZ2
3

7.419537e+00
(3.056980e-03)

7.421572e+00
(6.064709e-04)

7.421715e+00
(1.372809e-04)

7.380040e+00#
(7.076656e-03)

7.371981e+00#
(3.875638e-02)

7.350569e+00#
(2.220661e-02)

5
3.157090e+01
(2.415933e-02)

3.166721e+01
(6.548007e-04)

3.166781e+01
(5.129480e-04)

3.149886e+01#
(2.619865e-02)

3.145814e+01#
(6.277721e-02)

3.139858e+01#
(7.085084e-02)

10
1.021699e+03
(4.906893e-01)

1.023905e+03
(1.423610e-03)

1.023902e+03
(4.192719e-03)

1.022163e+03
(4.299615e-01)

1.022172e+03
(3.206973e-01)

8.223136e+02#
(4.847301e+01)

DTLZ5
3

6.103498e+00
(2.913259e-04)

6.086240e+00#
(3.462620e-03)

6.046024e+00#
(2.227008e-04)

6.018466e+00#
(3.166178e-03)

6.083103e+00#
(4.024434e-02)

6.070736e+00#
(4.307412e-02)

5
2.306362e+01
(2.295313e-01)

2.162912e+01#
(9.476133e-01)

2.328373e+01
(1.640165e-02)

2.175597e+01#
(2.378197e-01)

2.152316e+01#
(1.422545e+00)

1.943602e+01#
(1.234198e+00)

10
6.453781e+02

(4.080592e+01)
6.172582e+02#
(4.132326e+01)

7.043390e+02
(1.714256e+00)

6.054385e+02#
(4.091687e+01)

5.909772e+02#
(7.644220e+01)

9.641241e+01#
(1.554238e+01)

DTLZ7
3

1.634605e+01
(5.285233e-02)

1.631926e+01#
(1.253568e-02)

1.620770e+01#
(1.240925e-01)

1.613885e+01#
(3.101462e-02)

1.612577e+01#
(1.553168e-01)

1.615480e+01#
(1.492618e-01)

5
1.281085e+01
(1.974810e-01)

1.284401e+01
(3.182259e-02)

6.515913e+00#
(1.170945e+00)

1.269646e+01#
(4.907749e-02)

1.255217e+01#
(1.341411e-01)

1.234590e+01#
(2.234605e-01)

10
3.479852e+00
(2.403388e-01)

1.806637e+00#
(4.781492e-01)

2.756082e-03#
(7.839814e-03)

3.033892e+00#
(5.070947e-02)

3.027342e+00#
(9.110566e-02)

2.080502e+00#
(4.312007e-01)

WFG1
3

5.056544e+01
(1.657420e+00)

4.917540e+01#
(1.742752e+00)

4.994533e+01
(2.615320e+00)

5.250059e+01
(1.702362e+00)

3.624458e+01#
(9.571499e-01)

3.857628e+01#
(9.613983e-01)

5
4.509188e+03

(1.444159e+02)
4.049661e+03#
(1.445036e+02)

4.522924e+03
(1.145447e+02)

4.682300e+03
(7.687667e+01)

3.198417e+03#
(8.802857e+01)

3.499936e+03#
(7.077142e+01)

10
5.037589e+09

(8.535179e+07)
4.333786e+09#
(4.767509e+07)

4.626119e+09#
(9.082857e+07)

5.028893e+09
(6.062765e+07)

3.422833e+09#
(2.182108e+07)

3.554077e+09#
(4.491835e+07)

WFG2
3

1.000262e+02
(2.196919e-01)

1.000303e+02
(2.020421e-01)

9.425491e+01#
(1.887090e+00)

9.995196e+01#
(2.218338e-01)

2.860787e+01#
(1.562061e-01)

2.878405e+01#
(3.147546e-02)

5
1.008420e+04

(5.737764e+01)
1.022660e+04

(2.444328e+01)
9.147103e+03#
(2.989196e+02)

1.021265e+04
(2.425440e+01)

2.356563e+03#
(1.302041e+01)

2.352252e+03#
(2.298487e+01)

10
1.348499e+10

(4.708062e+07)
1.343510e+10#
(5.838755e+07)

1.153362e+10#
(4.307707e+08)

1.346239e+10
(6.456777e+07)

2.433110e+09#
(1.405830e+07)

2.417620e+09#
(3.423298e+07)

WFG3
3

7.306197e+01
(3.258533e-01)

7.359113e+01
(3.698540e-01)

6.949014e+01
(2.043137e+00)

7.476737e+01
(2.010304e-01)

2.974536e+01
(2.198130e-01)

3.026476e+01
(9.539859e-02)

5
6.735962e+03

(9.568603e+01)
6.705622e+03

(6.623165e+01)
5.831355e+03#
(1.740491e+02)

6.720322e+03
(8.790247e+01)

2.425136e+03#
(2.737458e+01)

2.467475e+03#
(5.330311e+00)

10
8.262095e+09

(2.467236e+08)
7.851751e+09#
(1.420734e+08)

3.407782e+09#
(4.406816e+08)

7.150575e+09#
(8.942471e+08)

2.435088e+09#
(7.572200e+07)

2.460728e+09#
(2.651078e+07)

DTLZ1−1
3

2.237019e+07
(1.096230e+05)

2.044422e+07#
(2.230718e+05)

1.708422e+07#
(2.776295e+05)

1.754720e+07#
(1.024912e+04)

2.249206e+07
(9.308520e+04)

2.178413e+07#
(1.919526e+05)

5
5.990400e+10

(5.969126e+09)
1.653440e+10#
(7.395153e+09)

1.275157e+10#
(5.929635e+09)

1.829497e+10#
(1.178680e+08)

8.421535e+10
(5.019922e+09)

7.834908e+10
(5.592427e+09)

10
2.331601e+15

(1.332180e+15)
1.690928e+16

(1.594681e+16)
2.068669e+10#
(2.776909e+10)

3.254959e+17
(7.964585e+16)

4.163772e+17
(1.784438e+17)

1.959914e+17
(7.692566e+16)

DTLZ2−1
3

1.255756e+02
(1.372903e-01)

1.226427e+02#
(4.332124e-01)

1.241646e+02#
(1.767939e-01)

1.246298e+02#
(1.975120e-02)

1.202429e+02#
(1.235826e+00)

1.232392e+02#
(4.384877e-01)

5
1.823404e+03

(5.652832e+00)
1.529187e+03#
(3.829295e+01)

1.570781e+03#
(5.466206e+00)

1.377041e+03#
(2.801096e+00)

1.615070e+03#
(3.622796e+01)

1.684100e+03#
(2.422012e+01)

10
3.952305e+05

(6.000728e+03)
2.480210e+05#
(3.215706e+04)

1.837497e+05#
(3.540744e+03)

1.941735e+05#
(4.318334e+03)

4.467775e+05
(1.153133e+04)

4.295481e+05
(1.104582e+04)

DTLZ5−1
3

1.240446e+02
(1.543643e-01)

1.212729e+02#
(4.506920e-01)

1.230132e+02#
(1.173182e-01)

1.233805e+02#
(2.897257e-02)

1.191790e+02#
(1.218659e+00)

1.217996e+02#
(3.913095e-01)

5
1.830136e+03

(8.376583e+00)
1.526551e+03#
(4.186892e+01)

1.532378e+03#
(6.612506e+00)

1.490703e+03#
(3.599646e+00)

1.550531e+03#
(3.545733e+01)

1.663295e+03#
(2.143198e+01)

10
5.043244e+05

(5.933536e+03)
2.353908e+05#
(2.658733e+04)

1.618586e+05#
(2.870596e+03)

1.786897e+05#
(4.650613e+03)

3.841427e+05#
(1.267929e+04)

3.788162e+05#
(1.409232e+04)

DTLZ7−1
3

2.139263e+02
(1.705184e+00)

2.144482e+02
(1.844494e-02)

2.144785e+02
(3.401603e-03)

2.144350e+02
(1.484695e-02)

2.141398e+02
(6.446048e-01)

2.117720e+02#
(5.620357e+00)

5
1.193104e+03

(7.463449e+00)
1.190442e+03#
(4.159670e+00)

6.388549e+02#
(5.254422e+01)

1.197724e+03
(5.760920e+00)

1.195714e+03
(1.560565e+00)

1.167397e+03#
(3.067229e+01)

10
6.493424e+04

(1.799575e+02)
6.282093e+04#
(1.236603e+02)

7.555843e+03#
(6.397426e+02)

6.278498e+04#
(5.606912e+02)

6.374490e+04#
(1.597907e+02)

6.336153e+04#
(1.579373e+02)

WFG1−1
3

4.721465e+02
(5.118363e+01)

5.214593e+02
(2.613138e+01)

3.653092e+02#
(2.305800e+00)

4.717969e+02#
(4.848793e+01)

4.289752e+02#
(4.089696e+01)

4.226979e+02#
(4.328855e+01)

5
8.957760e+04

(1.295509e+04)
6.766707e+04#
(3.634016e+03)

4.312409e+04#
(1.486578e+03)

8.604789e+04
(1.028243e+04)

6.687040e+04#
(8.125469e+03)

5.398842e+04#
(6.022448e+03)

10
1.920711e+11

(1.254828e+10)
1.167307e+11#
(9.811376e+09)

7.403214e+10#
(3.748511e+09)

5.753336e+10#
(1.586430e+09)

1.037099e+11#
(5.197695e+09)

8.712812e+10#
(9.507560e+09)

WFG2−1
3

7.318853e+02
(4.584376e-01)

7.256549e+02#
(2.471515e+00)

7.318071e+02#
(5.137348e-01)

7.277336e+02#
(7.218694e-01)

3.548073e+02#
(4.631427e-01)

3.549143e+02#
(1.951948e-01)

5
1.638383e+05

(1.165835e+03)
1.470928e+05#
(8.586496e+03)

1.122933e+05#
(1.197256e+04)

1.499384e+05#
(4.291788e+02)

4.315723e+04#
(1.487567e+02)

4.156049e+04#
(6.526206e+02)

10
7.365072e+11

(6.254171e+09)
3.658776e+11#
(1.973606e+10)

2.462168e+11#
(2.934157e+10)

8.919695e+10#
(1.091716e+10)

7.359311e+10#
(2.277690e+08)

7.165991e+10#
(8.580112e+08)

WFG3−1
3

6.701244e+02
(9.728569e-01)

6.581207e+02#
(2.461272e+00)

6.559404e+02#
(1.399701e-01)

6.678986e+02#
(4.368737e-01)

3.901185e+02#
(2.837691e+00)

3.929122e+02#
(1.663457e+00)

5
1.460039e+05

(2.618698e+03)
1.271888e+05#
(5.065268e+03)

9.818104e+04#
(4.519958e+03)

1.345863e+05#
(2.667741e+02)

4.822825e+04#
(1.017141e+03)

4.912237e+04#
(6.555485e+02)

10
6.613123e+11

(2.015972e+10)
3.003925e+11#
(2.070638e+10)

1.932277e+11#
(2.123809e+10)

1.572410e+11#
(3.994016e+09)

8.120430e+10#
(2.177319e+09)

8.405921e+10#
(1.518237e+09)
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Table 3: Mean and standard deviation (in parentheses) of the Solow-Polasky
indicator. A symbol # is placed when CRS+-EMOA performed significantly
better than the other approaches based on a one-tailed Wilcoxon test using a
significance level of α = 0.05. The two best values are shown in gray scale, where
the darker tone corresponds to the best value.
Problema Dim. CRS+-EMOA NSGA-III MOEA/D MOMBI2 ∆p-MOEA GDE-MOEA

DTLZ1
3

9.944608e+00
(7.332450e-01)

9.394548e+00#
(2.930251e-01)

9.314418e+00#
(3.914884e-02)

9.000566e+00#
(2.446366e-02)

7.811889e+00#
(9.608413e-01)

9.208526e+00#
(7.142910e-01)

5
1.338590e+01
(5.394744e-01)

1.927839e+01
(2.200570e-01)

1.910784e+01
(2.012103e-01)

1.784107e+01
(5.535436e-02)

1.258001e+02
(3.614573e-01)

7.251588e+01
(4.806114e+01)

10
1.785253e+01
(8.881198e-01)

4.215677e+01
(2.267717e+00)

3.557264e+01
(6.064497e-01)

3.493408e+01
(2.073537e+00)

2.196627e+02
(4.229255e-01)

1.937667e+02
(5.463117e+00)

DTLZ2
3

3.395527e+01
(9.380927e-02)

3.394704e+01#
(1.377030e-02)

3.393654e+01#
(1.057577e-03)

3.320388e+01#
(3.200128e-02)

3.071966e+01#
(5.648283e-01)

3.130480e+01#
(3.907121e-01)

5
9.880242e+01

(3.075202e+00)
1.023559e+02
(2.316020e-01)

1.017397e+02
(4.330518e-03)

1.000214e+02
(9.376416e-02)

9.047203e+01#
(1.071667e+00)

8.885177e+01#
(1.407456e+00)

10
2.144437e+02
(8.333968e-01)

2.144143e+02#
(4.461039e-02)

2.140218e+02#
(1.052798e-02)

2.134074e+02#
(2.440550e-01)

2.073661e+02#
(1.076644e+00)

2.149790e+02
(1.820800e+00)

DTLZ5
3

8.835302e+00
(8.683488e-03)

8.689954e+00#
(4.814112e-02)

4.565503e+01
(6.372947e-01)

8.446415e+00#
(1.275105e-02)

8.725615e+00#
(1.118233e-01)

9.131640e+00
(8.893988e-01)

5
5.453458e+01

(3.836635e+00)
7.846618e+01

(3.806546e+00)
2.193721e+01#
(7.192604e-01)

1.733111e+01#
(1.215347e+00)

6.458870e+01
(4.414063e+00)

9.229364e+01
(3.153601e+00)

10
1.426916e+02

(1.105651e+01)
1.855864e+02

(4.441145e+00)
7.636613e+00#
(7.127440e-02)

2.097795e+01#
(1.446842e+01)

1.636387e+02
(1.190412e+01)

2.009986e+02
(2.726407e+00)

DTLZ7
3

4.693189e+01
(4.563587e+00)

4.248938e+01#
(8.838503e-01)

3.411613e+01#
(6.885687e+00)

3.750968e+01#
(4.295088e-01)

3.356066e+01#
(8.918332e+00)

3.791999e+01#
(1.074318e+01)

5
7.703740e+01

(2.640331e+01)
9.605921e+01

(4.006295e+00)
2.595428e+01#
(3.104755e-01)

7.335971e+01#
(1.892378e+00)

1.014229e+02
(7.384253e+00)

8.467007e+01
(2.946531e+01)

10
2.083721e+02

(1.401193e+01)
3.401405e+01#
(4.627073e+01)

6.635493e+00#
(8.377910e-01)

1.539631e+02#
(1.794040e+01)

2.161036e+02
(1.887145e+00)

1.635677e+02#
(5.659825e+01)

WFG1
3

6.266729e+01
(4.306665e+00)

5.624993e+01#
(4.311929e+00)

5.053063e+01#
(2.764405e+00)

5.406056e+01#
(2.296813e+00)

3.936107e+01#
(2.712236e+00)

4.901870e+01#
(2.752851e+00)

5
7.766310e+01

(9.797998e+00)
9.244372e+01

(7.266040e+00)
7.480740e+01

(3.832994e+00)
7.292172e+01#
(5.425443e+00)

5.404634e+01#
(4.708150e+00)

9.197836e+01
(4.116442e+00)

10
1.153389e+02

(1.285140e+01)
8.917693e+01#
(8.545945e+00)

1.552376e+01#
(3.169355e+00)

6.819405e+01#
(8.992674e+00)

9.420152e+01#
(6.434297e+00)

1.681839e+02
(7.642626e+00)

WFG2
3

1.031961e+02
(6.913412e-01)

9.475339e+01#
(5.942618e-01)

7.243218e+01#
(1.099197e+00)

8.113447e+01#
(1.694539e+00)

1.566893e+01#
(4.695226e-01)

1.597100e+01#
(5.210876e-01)

5
9.923778e+01

(3.753788e+00)
1.259866e+02
(5.442239e-01)

9.750359e+01#
(2.449040e+00)

1.226234e+02
(1.081329e+00)

2.491924e+01#
(1.910851e+00)

2.346945e+01#
(2.689896e+00)

10
1.981494e+02

(4.297874e+00)
2.034942e+02

(6.167357e+00)
2.746068e+01#
(9.314055e+00)

1.826284e+02#
(2.286544e+01)

5.897645e+01#
(4.305811e+00)

5.040485e+01#
(7.890364e+00)

WFG3
3

7.979549e+01
(8.271398e-01)

5.447458e+01#
(3.954759e+00)

6.745390e+01#
(1.429561e+00)

4.359786e+01#
(9.246690e-01)

2.088260e+01#
(5.548807e-01)

2.237972e+01#
(2.670741e-01)

5
1.207901e+02

(1.514908e+00)
9.114798e+01#
(4.803291e+00)

1.203892e+02#
(1.120195e+00)

3.884532e+01#
(5.191645e+00)

3.640185e+01#
(1.590306e+00)

3.986356e+01#
(1.669298e+00)

10
2.198151e+02
(1.511883e-01)

1.842494e+02#
(6.381996e+00)

1.685512e+02#
(8.180955e-01)

1.223302e+02#
(2.606946e+01)

7.655449e+01#
(7.601122e+00)

9.569073e+01#
(5.324356e+00)

DTLZ1−1
3

1.238722e+02
(6.478345e-01)

1.192301e+02#
(9.769981e-01)

1.110656e+02#
(2.067972e-01)

1.076858e+02#
(1.612270e+00)

1.194494e+02#
(7.076038e-01)

1.026058e+02#
(2.385964e+00)

5
1.261138e+02
(3.746123e-01)

1.276049e+02
(7.483806e-01)

1.160278e+02#
(3.018754e+00)

6.760143e+01#
(4.891955e+00)

1.256546e+02#
(4.961652e-01)

1.091644e+02#
(2.978643e+00)

10
2.200000e+02
(6.478398e-01)

2.194982e+02#
(5.550208e-01)

1.845834e+01#
(3.362045e+01)

2.177230e+02#
(1.598879e+00)

2.199297e+02#
(1.852502e-01)

1.956693e+02#
(3.843626e+00)

DTLZ2−1
3

1.129425e+02
(2.079720e-01)

9.168006e+01#
(2.394444e+00)

9.466441e+01#
(8.426911e-02)

9.433643e+01#
(1.896075e-01)

8.857439e+01#
(2.604729e+00)

8.818635e+01#
(2.087133e+00)

5
1.259981e+02
(4.099458e-04)

1.134723e+02#
(2.970256e+00)

1.247875e+02#
(1.631879e-01)

4.888021e+01#
(1.111632e+00)

1.185054e+02#
(1.679308e+00)

1.078721e+02#
(2.347639e+00)

10
2.249876e+02

(1.368722e+00)
2.075064e+02#
(3.824826e+00)

2.079851e+02#
(1.899257e+00)

1.810577e+02#
(3.309000e+00)

2.118042e+02#
(2.291510e+00)

1.931317e+02#
(4.552358e+00)

DTLZ5−1
3

1.069995e+02
(2.945855e-01)

8.469885e+01#
(1.989703e+00)

7.942908e+01#
(2.711812e-01)

8.622124e+01#
(1.733700e-01)

8.484735e+01#
(2.558670e+00)

8.305258e+01#
(1.583665e+00)

5
1.259747e+02
(3.780629e-03)

1.041424e+02#
(3.722763e+00)

1.229014e+02#
(1.837627e-01)

4.957223e+01#
(1.976910e+00)

1.180479e+02#
(1.846989e+00)

1.076183e+02#
(2.710724e+00)

10
2.199997e+02
(6.289321e-05)

1.579241e+02#
(1.854156e+01)

1.997485e+02#
(1.822188e+00)

1.636386e+02#
(7.545337e+00)

2.094613e+02#
(2.217251e+00)

1.946215e+02#
(3.565477e+00)

DTLZ7−1
3

2.345500e+01
(6.661044e+00)

2.375280e+01
(1.117994e+00)

2.588876e+01
(3.461387e+00)

1.994117e+01#
(4.519640e-01)

2.178525e+01#
(8.341601e-01)

1.805087e+01#
(8.596927e+00)

5
5.660901e+01

(1.568211e+01)
7.238636e+01

(1.269825e+01)
1.211841e+01#
(1.172186e+00)

4.067053e+01#
(9.192226e+00)

8.003609e+01
(3.156330e+00)

3.632242e+01#
(3.834467e+01)

10
2.043557e+02

(1.375176e+01)
1.347251e+01#
(4.083423e+00)

4.293619e+00#
(1.198274e-01)

8.812385e+00#
(2.123041e+01)

2.008713e+02#
(2.214667e+00)

2.028099e+02#
(5.987172e+00)

WFG1−1
3

6.415681e+01
(4.459890e+00)

5.511082e+01#
(2.648385e+00)

1.663876e+01#
(1.535080e+00)

4.730483e+01#
(1.092483e+00)

4.842279e+01#
(5.020350e+00)

4.279700e+01#
(1.538301e+01)

5
1.210334e+02

(2.192520e+00)
5.596308e+01#
(5.654765e+00)

7.815456e+00#
(1.225035e+00)

3.289189e+01#
(2.858823e+00)

1.098994e+02#
(4.122587e+00)

5.939438e+01#
(3.673750e+01)

10
2.186105e+02
(3.132639e-01)

6.927501e+01#
(2.258115e+01)

2.480353e+00#
(2.063527e+00)

3.476224e+01#
(4.296041e+00)

1.950445e+02#
(6.121614e+00)

1.138247e+02#
(5.884228e+01)

WFG2−1
3

1.140860e+02
(4.325357e-01)

9.532850e+01#
(1.992380e+00)

8.890140e+01#
(1.794800e-01)

9.018353e+01#
(4.679018e-01)

3.230763e+00#
(4.485117e-02)

2.757698e+00#
(2.020626e-01)

5
1.234346e+02
(7.027142e-01)

9.827363e+01#
(2.826007e+00)

4.956629e+01#
(8.529213e+00)

3.689443e+01#
(1.559225e+00)

5.922537e+00#
(7.879377e-01)

2.841850e+00#
(6.498607e-01)

10
2.196197e+02
(9.739353e-02)

2.001692e+02#
(4.030917e+00)

2.500717e+01#
(2.754994e+00)

1.075588e+02#
(1.284360e+01)

1.138578e+01#
(8.309404e-01)

7.783812e+00#
(1.059255e+00)

WFG3−1
3

1.075596e+02
(2.777510e-01)

7.484580e+01#
(2.494935e+00)

6.164392e+01#
(7.387154e-02)

7.097018e+01#
(1.699291e-01)

2.303097e+01#
(7.406376e-01)

2.381595e+01#
(2.661523e-01)

5
1.259055e+02
(2.786019e-02)

8.633630e+01#
(4.246132e+00)

6.654930e+01#
(3.739241e+00)

3.937358e+01#
(1.177063e+00)

3.626087e+01#
(2.423541e+00)

4.063424e+01#
(2.006301e+00)

10
2.199995e+02
(8.710466e-04)

1.929382e+02#
(8.857025e+00)

5.251797e+01#
(3.065445e+00)

1.414077e+02#
(1.791224e+01)

7.135125e+01#
(7.053632e+00)

9.336338e+01
(4.573319e+00)
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Fig. 2: Pareto fronts generated by CRS+-EMOA and the adopted MOEAs. Each
front corresponds to the median of the hypervolume value.

5 Conclusions and Future Work

Currently, most of the state-of-the-art MOEAs employ a set of convex weight
vectors as search directions, reference set or as part of a quality indicator. This
type of MOEAs have shown outstanding results on benchmark problems such
as the DTLZ and WFG test suites. However, if these problems are slightly mod-
ified, then the performance of MOEAs based on convex weight vectors is sig-
nificantly degraded. In this paper, we propose an Evolutionary Multi-Objective
Algorithm based on the Combination of the Riesz s-energy and IGD+ indica-
tors that overcomes such overspecialization of state-of-the-art MOEAs on certain
benchmark problems. Our proposed approach called CRS+-EMOA, exploits the
convergence property of IGD+ and promotes evenly distributed solutions using
s-energy. CRS+-EMOA was compared with MOEAs using and not using convex
weight vectors. The experimental results showed that our approach has a com-
petitive performance on the DTLZ and WFG instances, while it outperforms the
adopted MOEAs on the DTLZ−1 and WFG−1 problems. Based on the empirical
results, we have an insight that CRS+-EMOA is a more general multi-objective
optimizer. As part of our future work, we are interested in improving the per-
formance of CRS+-EMOA on the original benchmark problems while preserving
its good performance on the minus versions of the considered test suites. An-
other research direction that we want to explore is the combination of IGD+ and
s-energy in a single quality indicator.
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